Förstudie

Käppalaförbundet

Projekt Käppala 2020

Lidingö 2010-12-23

Andreas Thunberg
Innehållsförteckning

1. Bakgrund ... 4
2. Idéförslag ... 4
 2.1 Förslag som inte ingår i det fortsatta arbetet .. 5
 2.1.1 Mekanisk rening ... 5
 2.1.2 Biosteg .. 5
 2.1.3 Eftersedimentering .. 6
 2.1.4 Sandfilter ... 7
 2.1.5 Bräddvattenrenning .. 7
 2.1.6 Läkemedelsrenning .. 7
 2.2 Förslag som ingår i det fortsatta arbetet .. 8
 2.2.1 Mekanisk rening ... 8
 2.2.2 Försedimentering ... 8
 2.2.3 Biobassänger ... 8
 2.2.4 Eftersedimentering .. 9
 2.2.5 Bräddvattenrenning .. 9
 2.2.6 Läkemedelsrenning .. 9
3. Framtida utbyggnad - principiella överväganden ... 9
 3.1 Hydraulik och flöden .. 10
 3.2 Slambehandlingen ... 14
 3.2.1 Rötkammare ... 14
 3.2.2 Slamavvattning ... 17
4. Utbyggnadsförslag ... 17
 4.1 Bräddvattenrenning .. 17
 4.1.1 Processutformning ... 18
 4.1.2 Implementering på Käppala ... 19
 4.1.3 För- och nackdelar .. 21
 4.2 Huvudlinjen ... 21
 4.2.1 Kolkälla .. 22
 4.2.2 MBBR ... 23
 4.2.3 Vakuumbehandling av bioslam ... 23
 4.2.4 Fosforavskiljning .. 26
 4.3 Slambehandling ... 27
 4.3.1 Rötkammare ... 27
 4.3.2 Slamavvattning ... 28
5. Åtgärder, tidplan och kostnadsbild ... 28
 5.1 Fall 1 - Nuvarande rengöringskrav .. 29
 5.1.1 Milstolpe 1 - Nuvarande belastning upp till 700 000 p e 29
 5.1.2 Milstolpe 2 - Belastning motsvarande 700 000 p e 33
 5.1.3 Milstolpe 3 – Belastning motsvarande 900 000 p e 37
 5.2 Fall 2 – Skärpta rengöringskrav ... 39
 5.2.1 Milstolpe 1 – Nuvarande belastning upp till 700 000 p e 39
 5.2.2 Milstolpe 2 – Belastning motsvarande 700 000 p e 44
 5.2.3 Milstolpe 3 - Belastning motsvarande 900 000 p e 48
 5.3 Ekonomisk analys ... 52
 5.3.1 Nuvarande krav ... 53
5.3.2 Skärpta krav...55

6 Referenser ..58

BILAGA I..60
BILAGA II...61
BILAGA III...62
BILAGA IV...63
BILAGA V...64
BILAGA VI...65
BILAGA VII..66
BILAGA VIII..67
1 Bakgrund

Käppalaverket står inför en rad utmaningar som innebär att reningsverkets kapacitet måste ses över. Reningsverket byggdes ut under 90-talet för att kunna hantera en belastning motsvarande 700 000 pe \(^1\) i samband med att kväverening infördes. Dagens belastning uppgår till ca 550 000 pe med maximala dygnseventer på ca 600 000 pe. Under kommande 20 års period väntas belastningen från redan anslutna kommuner öka med ca 100 000 pe och ett antal nya kommuner har ansökt om eller aviserat intresse för anslutning, som mest kan 200 000 pe väntas från dessa kommuner om samtliga ansluts.

För att kunna hantera eventuella skärpta krav i kombination med en ökad belastning har Käppalaförbundet initierat projekt Käppala 2020.

Denna rapport syftar till att ge förslag på en etappvis utbyggnad av reningsverket och fortsatt arbete i projektet. En grov kostnadsbild presenteras också som underlag till frågan om anslutning av nya kommuner.

2 Idéförslag

Ett antal grundförutsättningar gavs till teknikonsulterna, dessa var följande;

1. Möjlig utbyggnad av berganläggningen föreligger endast nedåt, i sida eller uppåt finns inga möjligheter. Ny teknik och andra processlösningar premieras framför större volymer i vattenreningen.

2. Allt vatten som uppkommer i anslutna kommuner skall tas om hand då det uppkommer, ingen annan flödesutjämning än den som finns i Lidingötunneln om 40 000 m\(^3\) finns tillgänglig.

\(^1\) 1 pe = 70 g BOD\(/\)person\(\cdot\)dag

4. Två belastningssituationer ska undersökas; 700 000 p e samt 900 000 p e.

5. En reduktion med 90 % av läkemedelsrester ska undersökas separat.

6. Ingen bräddning av orenat avloppsvatten får förekomma.

7. Två olika fall gäller för reningskraven.
 a. Total-N 10 mg/L; Total-P 0,3 mg/L; BOD₇ 8 mg/L.
 b. Total-N 5 mg/L; Total-P 0,1 mg/L; BOD₇ 4 mg/L.

Samtliga inlämnade förslag visade att Käppalaverket har väl tilltagna volymer och att reningsverkets kapacitet är långt ifrån uppnådd förutsatt att processen modifieras. Förslagen skiljde sig kraftigt åt sinsemellan, vissa innebar mycket stora omställningar medan andra var mer modesta. Ett huvudspår i de inlämnade förslagen är att slamseparation och hydraulik är de viktigaste frågorna för verkets kapacitet, inte den organiska kapaciteten.

2.1 Förslag som inte ingår i det fortsatta arbetet

2.1.1 Mekanisk rening

Galler
 o Istället för de idag befintliga steeggallren har hålsilar med håldiameter 2 mm föreslagits. Hålsilarna krävs för att minska halten av finpartikulär suspenderad substans till MBR enheter som skulle placeras i biobassängerna. Lösningen har dock förkastats p g a mycket stora drift- och investeringskostnader för MBR- enheterna. Dessutom krävs ett högre tryckfall över silarna vilket innebär omställningar i framförliggande kanal.

Sandfång
 o Gamla avställda sandfång tas i drift för att öka den hydrauliska kapaciteten till 9 m³/s. Här ska allt flöde sedan ledas genom den biologiska reningen. Mycket stora omställningar krävs för att kunna hantera hydrauliken och går emot principen att utnyttja befintliga volymer så långt som möjligt.

 o Gamla avställda sandfång tas i drift för att öka den hydrauliska kapaciteten till 9 m³/s, därefter leds vatten till en ombyggd linje där bräddvattenrening genomförs med lamellflotationsenheter. Förslaget innebär stora omställningar för att kunna hantera hydrauliken och andra metoder är mer kostnadseffektiva (se stycke 2.2.5).
2.1.2 Biosteg

- SSH (sidoströmshydrolys) har föreslagits i kombination med biologisk fosforrening. Här frigörs VFA (flyktiga fettsyror) via retursamlhydrolys vilket ger en mer stabil och effektivare fosforavskiljning. Biologisk fosforrening används i nuvarande process och uppvisar stundtals instabila driftförhållanden. Ett återkommande problem är kraftig internbelastning av fosfat från rötkammarna, ibland motsvarande 50% av inkommande fosforbelastning. Vid skärpta reningskrav kan inte sådana situationer tillåtas uppstå och biologisk fosforavskiljning anses då inte vara en lämplig lösning.

- ATS (Aeration Tank Settling) innebär att delar av biobassängerna utnyttjas till sedimentation vid höga flöden, detta för att avlasta eftersedimenteringarna. Metoden försämrar avskiljningsgraden av främst kväve och vilar på ett antagande om att utspädningsfaktorn säkerställer utgående halter vilket anses vara osäker med skärpta reningskrav.

- Intermittent luftning har lagts fram som en metod för att optimera kvävereningen. Här skapas oxiska/anoxiska volymer i tid istället för spatialt vilket leder till en ökad flexibilitet. Metoden är välbeprövad och kan öka kapaciteten på reningsverket, dock är storleken på denna ökning relativt osäker och kostnaden för att införa intermittent luftning stor i jämförelse med andra mer säkra tekniker [6].

2.1.3 Eftersedimentering

- Att installera lameller i eftersedimenteringarna har föreslagits för att hantera en ökad slamybelastning, dock ingår också en utbyggnad med fler bassänger i förslaget vilket går emot principen att utnyttja befintlig anläggning maximalt.

- MBR (Membrane Bio Reactors) kan helt eller delvis ersätta eftersedimenteringssbassängerna. Slamhalterna kan därmed höjas kraftigt i biobassängerna och stora utrymmen frigörs. Dock kräver enheterna mycket
underhåll (1 ggr/vecka med citronsyra och hypoklorit) och investeringskostnaderna blir mycket stora.

- Efterpolering med lameller och bärrarmaterial innan sandfilter. För att säkerställa utgående fosfathalter placeras en Actiflo-enhet (se stycke 4.1) i en avställd eftersedimenteringssandfilter. Att minska antalet eftersedimenteringssandfilter anses dock inte vara lämpligt med tanke på att slamytbelastningen kommer att vara hög när belastningen har ökat. Metoden anses också vara mer lämpad för bräddvattenrenning än kontinuerlig drift p.g.a relativt stora driftkostnader.

2.1.4 Sandfilter

- Genom att bygga fler sandfilter minimeras risken för igensättning om slamflykt från eftersedimenteringar uppstår. Eftersom förslaget går emot principen att utnyttja befintlig anläggning maximalt anses det inte vara en lämplig lösning.

2.1.5 Bräddvattenrenning

- Lamellflotation i förstesedimentering, biosteg och eftersedimentering. Genom att installera lamellenheter i en hel linje (från förstesedimentering till eftersedimentering) kan 3 m³/s renas som bräddvatten. Dock innebär detta att en hel linje tas ur drift vilket inte krävs med andra mindre utrymmeskrävande metoder (se stycke 2.2.5 och 4.1).

2.1.6 Läkemedelsrenning

För läkemedelsrenningen har samtliga av de inlämnade idéförslagen baserats på det arbete som har utförts i Stockholm Vattens läkemedelsprojekt [8]. Fortfarande kvarstår frågetecken kring vilka substanser man bör fokusera på, främst eftersom deras ekotoxikologiska effekter till stor del är okända men också för att endast en bråkdel av substanserna är kartlagda. Två metoder har dock lyfts fram som mer lämpliga än andra, ozonering och/eller aktivt kol. Vad som skiljer förslagen åt är i huvudsak placeringen av en kontaktbassäng för ozon, alternativt aktivt kol. Följande förslag har valts bort från fortsatt arbete;

2.2 Förslag som ingår i det fortsatta arbetet

2.2.1 Mekanisk rening

Sandfäng
- Inloppsluckorna till befintliga sandfång öppnas upp för att minska tryckförluster och sänka nivån i förluftningskanalerna. En hydraulisk modell över det mekaniska reningssteget har visat att detta är en nödvändig åtgärd för att kunna leda 6 m³/s genom huvudlinjen (se stycke 3.1).

2.2.2 Försedimentering

2.2.3 Biobassänger

- För att öka kvävereningskapaciteten förordas efterdenitrifikation med extern kolkälla. Käppalaförbundet har sedan tidigare planer på att utvärdera effekterna av extern kolkälla och förslaget ingår i det fortsatta arbetet.

- Flera av förslagen innefattar olika versioner av MBBR (Moving Bed Bio Reactor) eller IFAS (Integrated Fixed- film Activated Sludge). Detta är processer där bärarmaterial tillsätts till hela eller delar av biobassängerna. I och med att biomassan växer på bärarna istället för i suspension krävs kortare hydrauliska uppehållstider och höga slamhalter kan hållas. Detta ökar reningskapaciteten i en given volym. MBBR kräver dock högre syrehalter och externt kol men är väl beprövade och ger dessutom hög motståndskraft mot ”wash out”.

- Kontaktbassäng för ozon i befintliga sandfilter eller i eftersedimenteringar. Sandfiltren ersätts med MBR- enheter i slutet av eftersedimenteringarna. Eftersom MBR-enheter har valts bort på grund av höga investeringskostnader kan inte förslaget genomföras.
Ökad slamhalt i biobassängerna. Här föreslås en ökning av MLSS-halten i biosteget för att erhålla tillräcklig kapacitet. I förslaget ingår en avgasning av bioslammet (se stycke 2.2.4) för att förbättra slammets sedimenteringsegenskaper och motverka slamflykt från eftersedimenteringsbassängerna. Metoden är mycket kostnadseffektiv och grundar sig i en redan väl fungerande process (aktivslamprocessen).

2.2.4 Eftersedimentering

I flera av förslagen identifierades slamseparation som huvudfrågan för att öka reningsverkets kapacitet. Redan nu uppstår problem med slamflykt till sandfilter och problemet skulle bli än större med samma process och ökad belastning.

En enkel åtgärd som har föreslagits för att förbättra den hydrauliska kapaciteten hos eftersedimenteringarna kan vara att installera dämpskärmar och/eller bafflar för att motverka densitetsströmmar. Förslaget är mycket kostnadseffektivt och ingår i fortsatt arbete.

2.2.5 Bräddvattenrenning

2.2.6 Läkemedelsrenning

Kontaktbassäng för ozon placeras i en avställd biobassäng i reningsverkets gamla del. Syrgas framställs på plats med VPSA (Vacuum Pressure Swing Adsorption). Detta spår anses som intressant eftersom befintlig anläggning då utnyttjas maximalt. Fortfarande kvarstår dock utredningar kring praktiskt genomförande och huruvida utrymme finns att ställa av en hel biobassäng.

3 Framtida utbyggnad - principiella överväganden

Som redovisat i stycke 2 har ett stort antal processtekniska lösningar presenterats, vissa har stämt bättre överrens med de givna förutsättningarna än andra och har därför valts ut för
fortsatt arbete. Ett antal principiella överväganden har gjorts för att kunna sälla bland förslagen.

- Befintliga volymer ska användas så långt det är möjligt, förslag där stora byggnationer ingår blir oftast kostsamma och har därför valts bort.

- Nya processlösningar måste vara realistiska och redan beprövade. En tekniskt enkel lösning premiersas dessutom framför komplexa.

- Ett rimligt mått av risktagande tillåts ingå för att inte få orimliga investerings- och driftkostnader. Vissa förslag har inneburit onödigt stora säkerhetsmarginaler och därmed också höga kostnader. Andra har istället inneburit att för stora risker tas för att hålla kostnaderna nere.

- Nya processlösningar ska komma i etapper allteftersom behoven uppstår. Målsättningen är också att finna tekniker som lätt kan combineras med andra tekniker.

I stycke 3 redovisas de problem som berör hydrauliken. Här diskuteras också de delar som inte har ingått i idéförslagen, rötning och slamavvattning. I stycke 4 motiveras och beskrivs de utvalda teknikerna mer ingående. Slutför, i stycke 5, presenteras en plan för en framtida utbyggnad baserat på två fall; i) med nuvarande reningskrav och ii) med skärpta krav.

Läkemedelsrenning kommer endast att diskuteras i korthet eftersom det fortfarande är svårt att säga om framtida krav.

3.1 Hydraulik och flöden

En mycket viktig parameter som påverkar utformandet av den framtida processen är den hydrauliska belastningen på reningsverket. I dagsläget har inkommande flöden mellan 6-7 m3/s som mest uppkommit under kortare perioder vid kraftiga regn eller snösmältning. I tabell 1 visas reningsverkets nominella kapacitet, här framgår att biosteg och eftersedimentering är byggda för att hantera 5 m3/s. Dock har större flöden, ca 6 m3/s belastat dessa delar under kortare perioder.

Tabell 1 – Dimensionerade maxflöden.

<table>
<thead>
<tr>
<th>Processteg</th>
<th>Dimensionerat flöde (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galler</td>
<td>10</td>
</tr>
<tr>
<td>Sandfång</td>
<td>6</td>
</tr>
<tr>
<td>Förersedimentering</td>
<td>6</td>
</tr>
<tr>
<td>Biobassänger</td>
<td>5</td>
</tr>
<tr>
<td>Eftersedimentering</td>
<td>5</td>
</tr>
<tr>
<td>Sandfilter</td>
<td>6</td>
</tr>
</tbody>
</table>
Vid en ökad anslutning kan ännu större flöden väntas och åtgärder för att stärka upp vissa delar av processen hydrauliskt kommer därför bli aktuella. Innan beslut kan tas om sådana insatser måste varaktigheten hos flödena undersökas. I figur 1 visas fördelningen av reningsverkets inkommande flöden som dygnsmedelvärden mellan åren 2000-2009. I figuren visas också den förväntade situationen när belastningen har ökat till 700 000 respektive 900 000 p e. De framtida flödena är framräknade från antagandet att flödesfördelningen är densamma som under åren 2000-2009. Visserligen kan ett ändrat klimat medföra större nederbördsmängder men samtidigt kan toppflöden jämnas mer när längre överföringsledningar används. I kurvorna går att utläsa hur det nuvarande dygnsmedelflödet till Käppalaverket ligger över 2 m3/s ca 10 % av tiden och att dygnsmedelflöden över 6 m3/s uppkommer inte alls, maximala toppar över 6 m3/s har visserligen uppstått men endast under ett fåtal timmar. Det största varaktiga flödet som har uppstått (ca 0,5 % av tiden) är 4 m3/s. Med en framtida anslutning till 700 000 p e förväntas dygnsmedelflödet ligga över 3 m3/s ca 10 % av tiden och överstiga 5 m3/s ca 0,8 % av tiden samt 6 m3/s ca 0,1 % av tiden.

Den högsta belastningen med 900 000 p e ger ett flöde över 3,7 m3/s för 10 % av tiden, överstiger 5 m3/s för 3 % av tiden, 6 m3/s för 1 % av tiden och 7 m3/s för 0,3 % av tiden. Flöden på 9 m3/s förväntas inte uppstå alls som dygnsmedelvärden, endast som momentana toppar.

Den högsta belastningen med 900 000 p e ger ett flöde över 3,7 m3/s för 10 % av tiden, överstiger 5 m3/s för 3 % av tiden, 6 m3/s för 1 % av tiden och 7 m3/s för 0,3 % av tiden. Flöden på 9 m3/s förväntas inte uppstå alls som dygnsmedelvärden, endast som momentana toppar.

Figur 1 – Flödesfördelning för nuvarande och framtida belastning.

Flödesanalysen visar på hur biosteg och eftersedimentering når upp till sin nominella kapacitet vid 0,8 % av tiden med 700 000 p e och vid 3 % av tiden med 900 000 p e. Att dimensionera den biologiska reningen för högre värden än den nu nominella kapaciteten kan därför inte anses vara rimligt eftersom frekvensen och varaktigheten för sådana flöden är mycket liten. Reningsverket skulle då vara överdimensionerat under större delen av tiden. Dock innebär skärpta reningskrav, främst för fosfor, att inget vatten kan tillåtas att brädda orenat. Fokus bör därför ligga på en effektiv bräddvattenrenning och ett maximalt flöde genom huvudlinjen på 5-6 m3/s.

I tabell 1 framgår att sandfängen är dimensionerade för 6 m3/s, men här råder vissa tvivel kring nivån i framförliggande kanaler vid höga flöden. I figur 2 och 3 visas en hydraulisk
modell över processen från silgaller till utlopp från försedimentering. Siffrorna i figur 2 anger beräkningspunkterna i modellen, i figur 3 visas sedan vattennivåer vid dessa punkter samt takhöjd i kanalerna. Nivåerna i figuren baseras på ett inkommande flöde på 6 m\(^3\)/s. En kurva visar nivån för fallet med befintliga inloppsluckor på sandfången. Det framgår i denna hur nivån då när högre än lägsta takhöjd i delar av förluftningskanalen. Det kan således bli problematiskt att leda in 6 m\(^3\)/s om inte åtgärder utförs på inloppet till sandfången. I figuren visas också nivån efter att en sådan åtgärd har genomförts. Här har ett runt hål med diametern 500 mm lagts till för att minska förlusten över inloppet. Nivåerna ligger därefter med marginal under lägsta takhöjd.

Flöden över 6 m\(^3\)/s kan inte gå via förluftningskanalen utan måste ledas direkt efter galler till kanal FT11 via befintlig bräddningslucka.

Sandfiltrens nominella kapacitet är angiven till 6 m\(^3\)/s. Som tidigare nämnts finns också här tvivel kring den faktiska kapaciteten i vissa driftsituationer. Det är av yttersta vikt att sandfiltren fungerar väl och kan hantera 5-6 m\(^3\)/s under längre perioder utan igensättning, speciellt när belastningen ökar och om skärpta krav kommer. Parallellt med projekt Käppala 2020 kommer därför filtrens skick att utredas och eventuella åtgärder utföras. Det förutsätts därför fortsättningsvis i denna rapport att filtren kan hantera sin nominella kapacitet.
Figur 2 – Beräkningspunkter för hydraulisk modell.
3.2 Slambehandlingen

3.2.1 Rötkammare

Käppalaverket rötar idag primärslam och överskottslam i två rötkammare på 9400 m3 vardera. Primärslammet rötas separat i ena rötkammaren varefter slammet leds till den andra rötkammaren där även centrifugerat överskottslam rötas. Processutformningen ser ut på detta sätt för att motverka att skumning uppstår när filamentsamt ligat överskottslam blandas med primärslam som har en hög gaspotential. Denna utformning medför en högre hydraulisk belastning på den andra rötkammaren (R200) och en ökning av antalet anslutna skulle kunna leda till överbelastning. En fråga att besvara i det framtida arbetet är därför när ett behov ytterligare rötningsvolymer uppstår.

Eftersom att primärslammet står för ca 80-85% av den totala biogasproduktionen medför en nedgång i gasproduktionen från R200 endast en mindre inverkan på den totala gasproduktionen. Av allvarligare karakter är istället om primärslammets uppehållstid sänks under en länge period. Vid större underhåll eller vid haverier i någon av rötkammarna kan detta ske. Vid sådana situationer utförs samröttning av bioslammet och primärslammet med en total uppehållstid mellan 8-14 dagar beroende på årstid och slamproduktion. Här sker då
ingen ympning av friska metanogener till rötkammaren (så som är fallet för R200 vid normal drift) och risken för wash out är därför större.

En annan parameter som bör beaktas är rötkammarnas organiska belastning (OLR). En mesofil rötkammare sägs vara högt belastad vid 3 kg VS/m$^3\times$d med en övre gräns kring 4 kg VS/m$^3\times$d. Rötkammare R100 har en organisk belastning som varierar mellan ca 2 till 4 kg VS/m$^3\times$d och rötkammare R200 mellan ca 1,5 till 3,5 kg VS/m$^3\times$d. Båda rötkammarna kan därför anses vara högt belastade.

Vid samrötning i bara en rötkammare är den organiska belastningen betydligt högre än rekommenderade värden. Eftersom metanbildande mikroorganismer har en fördubblingstid som kan vara upp emot två veckor kan en plötslig ökning av den organiska belastningen medföra ett överskott av icke-nedbrutet material, som t ex olika fettsyror vilket i sin tur kan ge en instabil process med risk för sänkt pH-värde. Primärlammet är också tämligen lätt nedbrytbart vilket lättare kan leda till en ansamling av fettsyror på grund av för snabb nedbrytning.

Under tömningen av rötkammarna sjönk gasproduktionen till 470 och 400 Nm3/h som veckomedelvärden för år 2008 respektive 2009. Detta är nästan häften av genomsnittligt årsmedelvärde med båda rötkammarna i drift (750 Nm3/h).

Med en ökad anslutning till verket kommer visserligen mer slam produceras och gasproduktionen att öka, men samtidigt blir uppehållstiden lägre och vid samrötning kan en kritisk nivå nås där rötkammarna går sura eller att ”wash out” sker. Det är därför av vikt att behovet av en ny rötkammare undersöks redan nu.

Ett antal utredningar från Käppala har redan undersökt behovet av en tredje rötkammare [10], [11]. Här har man också tittat på framtida hygieniseringskrav, möjligheten till mottagande av externt material samt ställt termofil rötning mot mesofil. Ännu finns stora osäkerheter kring vilka krav som kan komma för hygieniseringen och inte minst gäller detta för Käppalaverket som redan har en hygienisering av slammet genom Kemicond processen. Om denna metod blir godkänd som hygienisering, vilket är fallet i Finland, kommer en ny rötkammare sannolikt utformas för mesofil drift. Om metoden inte blir godkänd kommer istället termofil rötning eller pastörisering krävas. I denna rapport förutsätts att KemiCond blir godkänd och en ny rötkammare blir därfor mesofil.
3.2.2 Slamavvattning

4 Utbyggnadsförslag

4.1 Bräddvattenrening

Analysen av den hydrauliska situationen visar på ett framtida behov av en långt gående bräddvattenrening, speciellt med skärpta reningskrav. Flera lösningar har föreslagits (se stycke 2.1 och 2.2) men mest kostnads- och resurseffektivt är bräddvattenrening med lamellenheter och ballastmaterial, liknande Actiflo. Ett mycket stort antal sådana enheter finns dessutom installerade på reningsverk världen över, och deras effektivitet är väl känd.

I detta stycke redovisas översiktligt en lösning för bräddvattenrening med Actiflo på Käppalaverket. Andra fabrikat finns tillgängliga på marknaden och kan bli aktuella i ett senare skede.

Den hydrauliska analysen visar att maximalt ca 6 m3/s kan ledas genom huvudlinjen. Sett som dygnsmedelvärden kommer inte flöden högre än ca 7,8 m3/s att existera förutsatt att flödesprofillen är densamma även vid 900 000 p e. Däremot kan högre flöden uppstå momentant, hela 9 m3/s har därför använts som maximalt värde till dimensionering. Detta innebär att bräddvattenreningen måste kunna hantera 3 m3/s med långt gående rening.
Kraven på avskiljningsgrad är följande;

- 90 % avskilning av Total-P
- 70 % avskilning av BOD
- 10 % avskilning av Total-N

4.1.1 Processutformning

Metoden innebär ett mycket kompakt system för rening av främst fosfor och BOD och bygger på en kraftig fällning med koagulanter och polymer samt avskiljning av slam via lamellsedimertering. För att öka avskiljningsgraden och sedimenteringshastigheten tillsätts sand som bärarmaterial. Metoden tar upp ca 1/10 av den yta som skulle krävas med en konventionell fällning. I figur 5 visas principen för en Actioflo- enhet.

Figur 5 – Principskiss över Actioflo- enhet.

De olika stegen i reningsprocessen är följande;

1. **Koagulering**

2. Injektion av mikrosand
Vattnets leds därefter in i en injektionstank, här tillsätts mikrosand som blandas in med en toppmonterad omrörare. Mikrosanden stimulerar ytterliggare flockbildning genom att fungera som ”grodd”.

3. Tillsats av polymer och mogning
I nästkommande steg tillsätts en anjonisk polymer som stärker och kompakterar de bildade flockarna. Flockarna stärks ytterliggare i relativt lugna förhållanden i mognadstanken där lugn omrörning sker.

4. Lamellsedimentation
De bildade flockarna har en mycket hög sedimenteringshastighet och avskiljs sedan snabbt i lamellseparatoren. Ytbelastningen i systemet är ca 80 gånger högre än vad som ofta anges som övre gräns i en konventionell fällningsbassäng. Ovan lamellerna leds sedan renat vatten ut till recipient.

5. Regenerering av sand
Det sedimentade slammet pumpas ut från botten av sedimenteringssäsongen. Slumflödet uppgår normalt till 4-6 % av inkommande flöde beroende på TS-halt i slam/sandblandningen. Genom att pumpa slammet genom två hydrocykloner skapas en centrifugalkraft som avskiljer den tyngre sanden från slammet. Sanden kan därefter ledas tillbaka till injektionstanken och slammet till slambehandling eller försedimentering.

4.1.2 Implementering på Käppala

Eftersom tekniken inte är utrymmeskrävande kan enheterna placeras så att övriga anläggningselement påverkas mycket lite. Genom att utnyttja en eller flera av de gamla avställda sandfångarna kan investeringskostnaden och inverkan på övriga anläggningselement minimeras. De avställda sandfångarna ligger dessutom i direkt kontakt med redan befintlig bräddningskanal. På grund av detta har de avställda sandfångarna valts ut som en lämplig plats för placering av bräddvattenrenningen.

Flödeskrav
Flödesanalysen visade att det sannolikt kommer att dröja innan dygsmedelflöden större än huvudlinjens kapacitet blir frekventa. Ihållande bräddningsperioder är inte att vänta innan en belastning på åtminstone 700 000 p e har uppnåtts. Detta förutsätter dock att huvudlinjen kan hantera dimensionerade flöden i alla lägen. Under våren 2010 uppstod en mycket kraftig snösmältning föregången av en ovanligt kall vinter med små vattenmängder. Ytbelastningen på eftersedimenteringarna låg under flera månader kring 0,3 och 0,4 m/h i gamla respektive nya delen. Detta är ca hälften av dimensionerade värden. Förhållandena ledde därmed till en anrikning av slam med låg sedimenteringshastighet. När sedan flödena ökade kraftigt uppstod en mer eller mindre okontrollerad slamflykt som varade under en tvåveckorsperiod. Stora mängder vatten bräddades och riktvärde för fosfor överskreds för kvartal 1 och för BOD$_7$ för mars månad. Situationen kan anses som extrem men visade samtidigt på nödvändigheten av en bräddvattenrenning inom en relativt snar framtid. Om
skärpta reningskrav blir verklighet kommer bräddvattenrenning att vara oundviklig eftersom inget vatten då kan bräddas orenat.

Tekniken uppvisar en mer stabil och effektiv prestanda om fasta dimensionerade flöden kan hållas. För att säkerställa en hög avskiljningsgrad har det därför förutsatts att en anläggning på Käppala ska köras med fasta flöden. Genom att magasinera vatten i Lidingötunneln och därefter sänka nivån med ett fast och högt flöde blir detta möjligt. Detta medför dessutom att bräddning undviks i det längsta, om flödesbelastningen minskar innan tunneln är full kan huvudlinjen istället ta den uppdämda mängden. Principen kan utnyttjas ännu längre om magasinering tillåts även i andra delar av tunnelsystemet.

Med detta som bakgrund har två flödessituationer med Actiflo undersökt;

- Som en etappvis utbyggnad med 2 enheter med en kapacitet på 1,5 m3/s vardera, placerade i varsitt sandfång
- Som en enhet dimensionerad för 3 m3/s i ett sandfång.

Ombyggnadsbehov

Eftersom enheterna placeras i gamla avställda sandfång kommer relativt små omställningar krävas i övriga delar av verket. Översiktliga ritningar och processschema redovisas i bilaga I-III.

Fall 1 - 3 m3/s

Följande är de planerade åtgärderna;

- Ny kanallucka installeras i FT11 för att leda vatten in till sandfång
- Pumpar till sprinklersystem (i dagsläget placerade under sandfånget) flyttas
- Befintliga betongkonstruktioner rivas i sandfång
- Försiktigt bergssprängning av ny berghall (för att inte skada fördelningstunnel i FT21), bergförstärkning och sprutbetong på alla bergytor
- Gjutning, armering, formsättning
- Nytt inlopp till sandfång
- Maskiner och utrustning samt einstallationer, apparat och styrskåp
- Doseringsutrustning för järn och polymer, befintliga fickor i SA00 används till järnklorid, ny polymerutrustning anläggs vid sandfång.

Fall 2 – 1,5 m3/s

Skillnaden mot fall 1 blir här att endast 850 m3 berg måste tas från sidan av de avställda sandfångens samt att pumparna till sprinklersystemet kan stå kvar. I övrigt är åtgärderna de samma.
4.1.3 För- och nackdelar

Lamellenheterna behöver manuell rengörning efter 2-3 bräddningstillfällen, dock är de få och relativt lättillgängliga. Andra undersökta metoder har inneburit att ett mycket stort antal lamellenheter installeras och dessutom används kontinuerligt vilket skulle innebära ett stort underhållsbehov.

Verkningsgraden hos hydrocyklonerna sägs vara ca 99,9% vilket innebär att en mindre mängd sand smitter från enheten. Efter en viss tids drift måste därför sand fyllas på. Om enheten används ofta kan behovet vara så pass stort att en sandsilo bör byggas. Detta kan dock göras i efterhand om behovet uppstår och kommer inte påverka kostnadsbilden nämnvärt. Det finns också exempel där avskiljningsgraden har varit lägre och mer sand har avgått. Vid mer frekvent drift skulle förlusten då kunna bli betydande. Mellan bräddningstillfällen måste enheterna vara vattenfylda för att inte mikrosanden ska kompakteras i bevattnade delar. För att motverka bildande av svavelväte och luktproblem måste vattnet bytas ut, uppskattningsvis en gång i veckan, vilket innebär ett visst underhåll och tillsyn av en anläggning som står i ”stand-by” större delen av tiden.

4.2 Huvudlinjen

För den biologiska reningen har ett stort antal processer undersökts. Efter utvärdering enligt tidigare beskrivna överväganden har fyra processer valts ut för att möta framtidens scenario. Dessa fyra processer är;

1. Kolkälla – För att med relativt enkla åtgärder öka reningsverkets kvävereningskapacitet kan extern kolkälla doseras för efterdenitrifikation.

2. MBBR teknik – Delar av biosteget ställs om till en bärarprocess

3. Avgasning av bioslam – En mycket lovande teknik som ännu inte har slagit igenom i Skandinavien, finns dock på ett 40-tal anläggningar runt om i världen.

4. Förfällning – För att möta skärpta reningskrav för fosfor kan förfällning bli nödvändig i kombination med simultanfällning och efterpolering på sandfilter.

I följande stycken motiveras valet av dessa processer, i stycke 5 och 6 redovisas hur dessa processer kan implementeras på Käppala för fallet med nuvarande krav respektive skärpta krav. Där redovisas också kostnadsbilder för omställningarna.
4.2.1 Kolkälla

Käppala har väl tilltagna volymer och under större delen av året är nitrifikationen fullständig. Begränsande för kvävereningen är istället denitrifikationen. Reduktionsgraden av nitrat är kopplad till denitrifierande mikroorganisms tillväxthastighet. I ekvation 1 visas hur tillväxthastigheten i huvudsak styrs av tre parametrar; kolkälla, syrehalt och nitrathalt.

\[
\mu = \mu_{\text{max}} \left(\frac{S}{S + K_S} \right) \left(\frac{K_{\text{DO}}}{K_{\text{DO}} + DO} \right) \left(\frac{NO_3}{NO_3 + K_{NO_3}} \right)
\]

(1)

Där

\(\mu\) = tillväxthastighet hos denitrifierare \([g\ nya\ celler/(g\ cell\cdot dgn)]\)

\(\mu_{\text{max}}\) = maximal tillväxthastighet hos denitrifierare \([g\ nya\ celler/(g\ cell\cdot dgn)]\)

\(S\) = koncentration av lättillgängligt organiskt material \([mg/l]\)

\(K_S\) = konstant för halva mättnadskoncentrationen av lättillgängligt organiskt substrat \([mg/l]\)

\(K_{\text{DO}}\) = inhiberingskonstant för löst syre \([mg/l]\)

\(K_{NO_3}\) = konstant för halva mättnadskoncentrationen av löst nitrat \([mg/l]\)

\(DO\) = löst syre \([mg/l]\)

\(NO_3\) = koncentration av löst nitrat \([mg/l]\)

När det gäller syre- och nitrathalt övervakas processen noggrant för att skapa de rätta förutsättningarna, men för kolkällan är situationen en annan. Eftersom den enda tillgängliga kolkällan till fördenitrifikationen på Käppala är innehållet i inkommande vatten finns i dagsläget ingen riktig möjlighet att påverka koncentrationen. Begränsningen av kolkälla är under delar av året mycket påtaglig och tillfälliga utsläpp av t ex melass från Jästfabriken eller glykol från Arlanda flygplats ger ofta en tydlig nedgång i utgående nitrathalter.

Denitrifikationshastigheten är också oftast relativt låg i en fördenitrifikationsprocess, ca 1,4 g NO\(_3\)-N/kg VSS·h vid 12 °C, jämfört med en efterdenitrifikation med externt kol, 3-5 g NO\(_3\)-N/kg VSS·h.

En möjlig väg att gå för att öka Käppalaverkets kvävereningskapacitet är därför att införa en efterdenitrifikation med tillsats av extern kolkälla. En sådan process kan som första steg implementeras relativt enkelt till den idag befintliga processen. Vid krafftig ökad belastning och/eller skärpta reningskrav kan en redan byggd doseringsanläggning därefter anpassas till andra processer som t ex MBBR (Se stycke 4.2.2.). Dosering av kolkälla underlättar också användandet av förfällning vilken kan bli en nödvändighet med skärpta krav och ökad belastning (se stycke 4.2.4).

Tre olika typer av kolkälla undersöcktes, metanol, etanol samt en produkt benämnd Brentaplus VP1. De två alkoholerna innebär att ett utökat tillstånd för brandfarlig vara måste sökas. Brentaplus VP1 är varken brandfarlig eller giftig och klassas inte som farligt gods och är därför lättare att hantera. Beräkningarna baserades på samma scenarios som i de tidigare inlämnade idéförslagen, d.v.s 700 000 samt 900 000 p.e i kombination med nuvarande eller skärpta reningskrav. Det framgick att den organiska kapaciteten i biosteget utformat som ASP är mer än tillräcklig för att kunna hantera 900 000 p.e med skärpta reningskrav. Dock krävs en hög slamhalt i biosteget vilket innebär att andra åtgärder (se stycke 4.2.3) måste genomföras för att inte överbelasta eftersedimenteringarna. I kombination med MBBR blir kapaciteten ännu större och risken att överbelasta eftersedimenteringarna minimeras.

4.2.2 MBBR

Nackdelar med processen är att biofilmens tjocklek kräver höga syrehalter och extern kolkälla. Membranluftarsystemet i Käppalaverkets aeroba zoner skulle med denna lösning bytas ut till grovblåsiga system. Som en följd krävs då större deoxzoners för att inte få flotation i eftersedimenteringar. MBBR ger också upphov till en högre halt av findispersa flockar som kan leda till igensättnings av sandfilter eller förhöja utgående fosforhalter, en flockning med t.ex järnklorid är därför nödvändig innan eftersedimentering. För att hålla bärarmaterialet på plats krävs också silar i slutet av biobassängerna.

4.2.3 Vakuumbehandling av bioslam

Samtliga idéförslag fastslog att reningskapaciteten kan ökas kraftigt med relativt enkla åtgärder. Genom att öka slamhalten och tillsätta externt kol är reningskapaciteten mer än tillräcklig för att möta även det tuffaste scenariot, åtminstone för kväveavskiljningen. En sådan lösning skulle dock innebära en risk för att eftersedimenteringarna överbelastas med
slamflykt redan vid måttliga flöden. Slammets sedimenteringsegenskaper är därför avgörande för valet av processutformning.

En mycket intressant metod har utvecklats under de senaste 15 åren för att förbättra slamegenskaperna i ett aktivslamsystem, vakuumbehandling av bioslam. Tekniken bygger på att hela vattenströmmen från biosteget utsätts för vakuum innan det leds till eftersedimentering. Den bakomliggande principen är Henry’s lag som beskriver gasers löslighet i vatten som funktion av rådande tryck. Ett sänkt tryck sänker lösligheten för gaser i vatten varför dessa då separeras från vattenfasen. Om slam utsätts för ett undertryck frigörs därmed gaser samtidigt som flockar slås sönder. När slammet återigen utsätts för atmosfärtryck skapas nya flockar men med betydligt bättre sedimenteringsegenskaper.

Genom att leda bioslammet via ett avgasningstorn kan på så sätt sedimenteringsegenskaperna förbättras väsentligt. I figur 6 visas en principskiss för metoden.

Figur 6 – Avgasning av bioslam.

Avgasningen sker i tre faser:

1. **Fas 1**
 a. Uppehållstid 4-7 sekunder
 b. Snabbt tryckfall till ca 0,05 bar
 c. Mikrobubblor skapas i slamflockarna som sväller 20-25 ggr
 d. Partiell sönderdelning av flockarna
2. Fas 2
 a. Uppehållstid 6-9 sekunder
 b. Omblandning under lågt tryck, gas evakueras
 c. Kvävgas och koldioxid ventileras från slamflocken
 d. Slamflockar slås sönder

3. Fas 3
 a. Uppehållstid 5-8 sekunder
 b. Atmosfärtryck infinner sig
 c. Flockar återskapas

Käppalaförbundet har låtit utföra labbförsök med metoden för att undersöka dess effekter [13]. Enligt leverantören av metoden kan sedimenteringsegenskaperna ofta förbättras så mycket att slamytbelastningen till eftersedimenteringarna kan dubbleras. Slamhalter kring 6 g MLSS/m³ i biosteget anges som rimliga vilket skulle innebära en ökning av slamytbelastningen från dimensionerade maximala värden på 4,9 och 6,4 kg MLSS/m²·h till hela 7,4 och 9,6 kg MLSS/m²·h för gamla respektive nya delens linjer. Med så höga slamhalter och i kombination med extern kolkälla visar processberäkningar att även 900 000 p e och skärpta reningskrav kan hanteras med en konventionell aktivslamprocess. I figur 7 visas en bild från försöket där bioslam från nya delens linjer utsattes för ett undertryck på 40 mbar. Slamhalten var vid tidpunkten för försöket 3,5 kg MLSS/m³, slammet hade dessutom mycket dåliga sedimenteringsegenskaper med filamentindex 5. Bilden visar situationen ett dygn efter det att avgasning skett. I referensprovet uppstod kraftig flotation till skillnad från det avgasade provent.

![Figur 7 – Bioslam utsatt för undertryck, referens till vänster i bilden.](image)

För att uppnå ett tillräckligt undertryck krävs att krävs att avgasningstanken befinner sig ca 9,5 m ovan vattenytan vilket innebär att hål på ca 44 m³ måste tas ut ovan varje enhet.
4.2.4 Fosforavskiljning

Fokus för de undersökta processerna har varit kvävereningens kapacitet eftersom denna är mer beroende av de utrymmen som finns tillgängliga. Dock bör det poängteras att vid skärpta krav finns endast mycket små marginaler avseende fosforavskiljningen, 0,1 mg Total-P/L i utgående vatten är svårt att uppnå med nuvarande process.

En sammanställning av avskiljningsgraden av fosfor i 87 reningsverk i norden [7], [14] har visat på hur förfällning och/eller efterfällning kan ge betydligt högre avskiljningsgrader än simultanfällning. Åtgärderna för att ställa om processen på Käppala till förfällning är också relativt enkla där sandfånget kan fungera som inblandningszon. Dock krävs en ny doseringsanläggning om trevärda järn- eller aluminiumsalter ska användas.

En möjlighet för att undvika detta scenario och ändå nå ner till 0,1 mg Total-P/L är att kombinera förfällning med simultanfällning och efterpolering på sandfiltren. Som tidigare nämnts är det samtidigt viktigt att inte överdosa järn på sandfiltren. Strategin blir enligt nedan;

1. Simultanfällning utförs i biosteg, slamåldern och slamytbelastning på eftersedimentering avgör hur kraftig denna kan vara. Detta blir basen i fosforavskiljningen.

2. Efterpolering på sandfilter. En viss dos blir nödvändig för att nå ner till 0,1 mg total-P/L. Med en simultanfällning som är så kraftig som möjligt enligt punkt 1 hålls dosen vid låga värden.

3. Om dosen av järn på filter ändå är kraftig under längre perioder påbörjas förfällning automatiskt. Denna förfällning är då tillräckligt låg för att inte orsaka fosforbrist i biosteget och syftar till att avlasta efterföljande fällningssteg.

Om en MBBR process blir aktuell så kommer dessa linjer varken använda förfällning eller simultanfällning. Huvudorsaken till detta är för att undvika utfällning av järnsalter på bärarmaterialet. Där används då istället en efterfällning med järnklorid (JKL) i kombination med polering på sandfiltren. Efterfällning med JKL är också nödvändig för att hålla halten av findisperst material nere.

4.3 Slambehandling

4.3.1 Rötkammare

I denna förstudie antas det dock att Kemicond blir godkänd och att mesofil rötning kan användas. Käppala har därför lätts utreda möjligheten att anlägga en till mesofil rötkammare om 9000 m³ i berget bredvid de redan befintlig rötkammarna. Ca 4300 m³ berg sprängs då ut för kammaren och 280 m³ måste tas ut för en anslutningstunnel.
4.3.2 Slamavvattning

5 Åtgärder, tidplan och kostnadsbild

I stycke 4 motiveras de olika teknikvalen, i följande stycke redovisas förslag på när åtgärder kan komma att krävas tillsammans med en kostnadsbild. I ett senare skede bör ett antal delprojekt genomföras för en mer detaljerad bild.

Eftersom skärpa reningskrav är att vänta, men tidpunkten för dessa fortfarande är okänd, kommer två separata fall att presenteras (stykke 5.1 och 5.2); ett med nuvarande krav och ett med skärpta krav. Varje fall baseras på tre milstolpar; innan 700 000 p e, vid 700 000 p e samt vid 900 000 p e. När detta sker i tid beror på när och om fler kommuner ansluts.

Varje milstolpe kommer dessutom ha två tekniklösningar. Förstahandsval kommer att vara den kostnadseffektiva vakuumtekniken. Om denna teknik inte fungerar som önskat kommer andrahandsvalet vara en MBBR process i vissa linjer. Fortsättningsvis kommer linje 1-6 kallas för ”gamla delen” och linje 7-11 för ”nya delen”.

I tabell 2 visas de förutsättningar som antas gälla vid de två milstolparna 700 000 och 900 000 p e.

| Tabell 2 – Belastning och flöden vid 700 000 respektive 900 000 p e |
|---------------------------------|-----------------|-----------------|
| Parameter | 700 000 p e | 900 000 p e |
| Medelflöde (m³/s)² | 2,6 | 3,4 |
| Maximalt dygnsflöde (m³/s) | 6,0 | 7,8 |
| Momentant maxflöde (m³/s) | 7,0 | 9,0 |
| Belastning BOD₅ (kg/d) | 49 000 | 63 000 |
| Belastning Total-P (kg/d) | 1 050 | 1 350 |
| Belastning Total-N (kg/d) | 8 400 | 10 800 |

²) Från WSP’s rapport [3].

28
5.1 Fall 1 - Nuvarande reningskrav

5.1.1 Milstolpe 1 - Nuvarande belastning upp till 700 000 p e

Den biologiska reningen kan i dagsläget hantera en ökad belastning utan större omställningar i processutformningen. Faktum är att beräkningar visar att reningskapaciteten är tillräcklig upp till 700 000 p e med endast små omställningar och med hanterbara slamhalter (maximalt 3,0 och 3,5 g MLSS/L i gamla respektive nya delens biobassänger). Den i dagsläget använda bio-P processen måste dock frångås och de anaeroba zonerna måste ställas om till anoxiska zoner både i gamla och nya delens linjer. De oxiska zonerna i gamla delens linjer måste också kompletteras med fler luftare. Fosforavskiljning utförs istället via simultanfällning med järnsulfat i samtliga linjer. I figur 8 visas zonindelningen för samtliga linjer.

Figur 8 – omställning av biosteget innan 700 000 p e.
Allt eftersom belastningen närmar sig 700 000 p e kommer risken för slamflykt vid höga flöden att öka om inte sedimenteringsegenskaperna förbättras. Ett antal åtgärder bör därför genomföras relativt snart för att motverka problemen.

En relativt enkel åtgärd som ska utföras för att förbättra eftersedimenteringarnas kapacitet, är installation av dämpskärmar eller bafflar. Detta kan motverka densitetsströmmar vid höga flöden och att slamflykt uppstår.

Men hjälp av vakuumbehandlingen (stycke 4.2.3) kan slammets sedimenteringsegenskaper förbättras väsentligt. Förutsättningen är givetvis att tekniken fungerar som utlovat vilket måste testas i full skala i ett bioblock. Detta bör göras så snart som möjligt för att beslut om fortsatt arbete ska kunna tas. Om tekniken inte presterar som lovat föreslås att ett fullskaleförsök för rening med MBBR istället påbörjas. Med en MBBR process kommer också extern kolkälla vara nödvändig. Även om aktivslamprocessen och vakuumtekniken fungerar som utlovat kan dock extern kolkälla bli aktuell eftersom detta medför lägre slamhalter i biobassängerna och därmed lägre belastning på eftersedimenteringarna. Försök med kolkälla bör således påbörjas oavsett vilken teknik som väljs (vakuumteknik eller MBBR). En försöksanläggning anläggs därför för dosering till BB11 i kombination med vakuumtekniken. Om MBBR blir aktuell kan denna anläggning sen kopplas samman till de bassänger där MBBR nyttjas.

Vid 700 000 p e förväntas momentana flöden upp till 7 m3/s vilket innebär att bräddning måste utföras oftare. Redan i dagsläget har situationer uppstått där stora mängder vatten bräddats. Bräddvattenrening bör därför ha implementerats långt innan 700 000 p e är uppnådd. I stycke 4.1 redovisas två fall för bräddvattenreningen med Actiflo, ett med två mindre enheter som hanterar 1,5 m3/s vardera och ett med en större enhet som kan hantera 3 m3/s. Visserligen kan andra fabrikat bli aktuella men de framtagna kostnaderna antas ändå vara representativa i detta skede. Investeringskostnaden för två mindre enheter blir betydligt dyrare än att direkt installera en stor enhet och underhållsbehovet ökar i och med fler maskindelar. Ett motiv för att installera två små enheter skulle vara att sprida kostnaderna över tid men detta kan inte anses vara kostnadseffektivt eftersom behovet med säkerhet kommer i framtiden. En stor enhet innebär dessutom att två sandfång fortfarande finns kvar och eventuellt kan användas till andra framtida processer (t.ex läkemedelsrening). I detta förslag ingår därför en stor enhet istället för två små. I och med en väl fungerande bräddvattenrening antas att vakuumtekniken inte blir nödvändig i samtliga block förrän vid 700 000 p e.

Sandfångens inlopp ska i samband med byggandet av bräddvattenreningen öppnas upp för att säkerställa flöden på 6 m3/s genom huvudlinjen.

För att kunna upprätthålla en hög gasproduktion i alla lägen och inte riskera överbelastning allt eftersom belastningen stiger krävs att en tredje rötkammare om 9000 m3 anläggs redan innan 700 000 p e är uppnått, eftersom kemicond förutsätts vara godkänd för hygienisering antas rötkammaren vara mesofil. Möjligheten till samrötning med externt material samt rötkammarens placering kommer att utredas i ett separat projekt som påbörjas under våren 2011.
För slamavvattningen antas att den nya utlastningen (stycke 4.3.2) har tagits i drift långt innan 700 000 p e är uppnått. Här används endast fyra Bucherpressar vilket är i underkant när belastningen närmar sig 700 000 p e. Med den nya utlastningen kommer dock pressarnas kapacitet att öka med 10-20 % tack vare att utlastningen inte längre begränsar pressarnas tömningstid. Det antas därför att ingen ny press behövs innan 700 000 p e är uppnått. Investeringskostnaden för den nya slamutlastningen inkluderas inte i denna rapport.

Nedan sammanfattas de föreslagna åtgärderna som bör genomföras innan 700 000 p e är uppnått, följt av en kostnadsbild. För mer detaljerade uppgifter om åtgärderna se [1], [2], [3], [12], [13], [18].

- Omställning av anaeroba zoner till anoxiska samt komplettering av luftarsystem i oxisk zon i gamla delens linjer.
- Slamhalter som mest 3,0 respektive 3,5 g MLSS/L i nya respektive gamla delen.
- Simultanfällning implementeras till samtliga linjer.
- Försöksanläggning för avgasningstorn installeras i BB11.
- Försöksanläggning för kolkälla installeras i BB11.
- Dämpskärmar installeras i ES01 och ES11 som försök. Om det faller väl ut modifieras samtliga eftersedimenteringar.
- Om vakuumteknik inte fungerar som önskat påbörjas förstudie med MBBR. Därefter ställs BB01 om till en MBBR process som fullskaleförsök. Den redan anlagda försöksanläggningen för kolkälla kopplas samman med linjen.
- Bräddvattenrenning för 3 m³/s anläggs i avställt sandfång, inlopp till sandfång öppnas upp.
- Ny rötkammare om 9000 m³ anläggs, 4300 m³ berg tas ut, ny anslutningstunnel från redan befintlig kommunikationstunnel anläggs.

I tabell 3 redovisas bedömda investeringskostnader för omställningarna. Ökade drift och underhållskostnader redovisas inte för denna milstolpe eftersom den inte berör en given belastning utan istället situationen från nuvarande belastning upp till 700 000 p e.

Tabell 3 - Investeringskostnader för nödvändiga åtgärder innan 700 000 p e med nuvarande krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omgörelse av zoner i biosteg samt dämpskärmar i eftersedimenteringar</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>4 500</td>
</tr>
<tr>
<td>Bygg</td>
<td>2 100</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>500</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>1 800</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>1 600</td>
</tr>
<tr>
<td>Summa</td>
<td>10 500</td>
</tr>
<tr>
<td>Bräddvattenrenning (Actiflo)</td>
<td></td>
</tr>
<tr>
<td>Rivning samt sprängning och förstärkning</td>
<td>6 400</td>
</tr>
</tbody>
</table>

Tabell 3 redovisas bedömda investeringskostnader för omställningarna. Ökade drift och underhållskostnader redovisas inte för denna milstolpe eftersom den inte berör en given belastning utan istället situationen från nuvarande belastning upp till 700 000 p e.
<table>
<thead>
<tr>
<th>Rubrik</th>
<th>Kostnad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betongkonstruktioner</td>
<td>4 500</td>
</tr>
<tr>
<td>Maskinutrustning</td>
<td>8 900</td>
</tr>
<tr>
<td>Instrument och styr</td>
<td>800</td>
</tr>
<tr>
<td>Montage för maskin och el</td>
<td>2 400</td>
</tr>
<tr>
<td>Allmän el</td>
<td>650</td>
</tr>
<tr>
<td>Ventilation</td>
<td>300</td>
</tr>
<tr>
<td>VVS installation</td>
<td>150</td>
</tr>
<tr>
<td>Flödesmätare, ombyggnad för koagulant</td>
<td>250</td>
</tr>
<tr>
<td>Design, projektering, upphandling, byggledning, drifttagning, intrimning</td>
<td>5 000</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>2 440</td>
</tr>
<tr>
<td>Summa</td>
<td>31 800</td>
</tr>
</tbody>
</table>

Ökad rötkammarvolym	
Maskinutrustning	12 125
El och automation	2 925
Bygg	16 300
Projektering och byggledning	4 702
Oförutsedda kostnader	3 135
Summa	**39 200**

Försöksanläggning för avgasningstorn	
Avgasningsanläggning	1 500
Montage	375
Sprängning för hål	110
El och automation	20
Intransport berg, utvändigt upplag	60
Projektering, byggledning etc.	41
Oförutsedda kostnader	207
Summa	**2 300**

Försöksanläggning kolkälla	
Process och maskin	1 000
Bygg	1 300
Elutrustning	500
Oförutsedda kostnader	700
Projektering och genomförande	600
Summa	**4 100**

Försöksanläggning MBBR	
Process och maskin	28 500
Bygg	1 700
Elutrustning	1 200
Oförutsedda kostnader	7 800
Projektering och genomförande	7 200
Summa	**46 400**
Inlopp sandfång: Uppskattat till 500

<table>
<thead>
<tr>
<th>Summa investeringar</th>
<th>88 400 (134 800)</th>
</tr>
</thead>
</table>

3) Endast om vakuumteknik inte fungerar som önskat.

5.1.2 Milstolpe 2 - Belastning motsvarande 700 000 pe

När belastningen har uppnått 700 000 pe kommer flöden över 5 m³/s vara relativt vanligt förekommande. En långt gående bräddvattenrenning ska då vara implementerad. Om försöket med avgasning har fallit väl ut installeras torn i samtliga bassänger. I och med detta kan den nödvändiga slamhalten på 3,0 och 3,5 g MLSS/L i nya respektive gamla delen hållas utan att eftersedimenteringarna överbelastas vid höga flöden. Blåsmaskinerna i gamla delens linjer måste stärkas med ytterligare en maskin på 17 000 m³/h. Simultanfällning nyttjas fortfarande i samtliga linjer i kombination med efterpolering på sandfiltren.

Om vakuumtekniken inte har gett de resultat som utlovats påbörjas istället ombyggnad av ytterligare 3 linjer i gamla delen till en MBBR process. Med en optimal fyllnadsgrad av bärarmaterial på 37-42 % behöver endast två till biobassänger ställas om till en MBBR process. Dock kommer fyra linjer (tre linjer till) krävas när belastningen har nått upp till 900 000 pe. Det är därför mer kostnadseffektivt att direkt anlägga fyra linjer och istället hålla en lägre fyllnadsgrad till en början. Med en MBBR process krävs också kolkälla och ett grovblåsigt luftarsystem samt att järnchlorid doseras innan eftersedimentering för att motverka höga halter av findespersa flockar till sandfiltren och för att hålla utgående fosfat låg. Simultanfällning tillämpas då endast i nya delens linjer där aktivslamprocessen fortfarande används. Här krävs ingen omställning av zoner och processberäkningar visar att extern kolkälla inte blir nödvändig, slamhalten kan hållas vid en acceptabel nivå på 3,0 kg MLSS/m³. Dock måste en till blåsmaskin med en kapacitet på 10 000 m³/h installeras. Eftersom endast 4 linjer används i gamla delens linjer kan en ramtid läkemedelsrenning rymmas i en av de avställda linjerna. I figur 9 visas processutformningen för denna lösning. Den tidigare omställningen av de anaeroba zonerna till anoxiska zoner (stycke 5.1.1.) ska bibehållas.

En tredje rötkammare är redan tagen i drift och volymen på 9000 m³ kommer krävas för rötning av slam, om externt slam skall emotes måste behovet av ytterligare volymer övervägas samt belastningen på slamavvattningen. Den ökade slammängden medför att slamavvattningens fyra Bucherpressar inte räcker till och en femte maskin installeras.
Figur 9 – Omställning av biosteget för en MBBR process vid 700 000 p e och nuvarande krav.

Nedan sammanfattas de föreslagna åtgärderna som bör genomföras när 700 000 p e är uppnått, följt av en kostnadsbild. För detaljerade uppgifter se ref [1], [16], [18].

- Slamhalter kring 3,0 och 3,5 g MLSS/L i nya respektive gamla delen, ytterligare luftarkapacitet krävs och en blåsmaskin å 17 000 m3/h installeras.
- Vakuumteknik installeras i samtliga biobassänger.
- Om vakuumteknik ej fungerar som önskat ställs ytterligare 3 linjer om till MBBR. Nytt luftarsystem, omrörare och omläggning av zoner krävs samt efterdenitrifikation med extern kolkälla. Järnklorid doseras till eftersedimenteringar för att minska halten av findispersa flockar och fosfat.
- En femte Bucherpress installeras i slamavvattningen.

I tabell 4 redovisas bedömda investeringskostnader för omställningarna för fallet då vakuumteknik används. Tabell 5 visar fallet med MBBR.
Tabell 4 – Investeringskostnader för nödvändiga åtgärder vid 700 000 p e med ASP och vakuumteknik med nuvarande krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avgasningstorn i biobassänger</td>
<td></td>
</tr>
<tr>
<td>Avgasningsanläggning</td>
<td>24 000</td>
</tr>
<tr>
<td>Montage</td>
<td>6 000</td>
</tr>
<tr>
<td>Sprängning för hål</td>
<td>1 760</td>
</tr>
<tr>
<td>El och automation</td>
<td>400</td>
</tr>
<tr>
<td>Intransport berg, utvändigt upplag</td>
<td>965</td>
</tr>
<tr>
<td>Entreprenadsamordning</td>
<td>1 988</td>
</tr>
<tr>
<td>Projektering, byggledning etc.</td>
<td>8 077</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>3 313</td>
</tr>
<tr>
<td>Summa</td>
<td>46 500</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra luftningskapacitet BB01-06</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>16 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>500</td>
</tr>
<tr>
<td>Ventilation</td>
<td>(10 000)</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>3 400</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>7 500</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>6 800</td>
</tr>
<tr>
<td>Summa</td>
<td>34 200 (44 200)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bucherpress #5</td>
<td></td>
</tr>
<tr>
<td>Maskin</td>
<td>4 200</td>
</tr>
<tr>
<td>El och automation</td>
<td>250</td>
</tr>
<tr>
<td>Montage</td>
<td>250</td>
</tr>
<tr>
<td>Projektering</td>
<td>50</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>470</td>
</tr>
<tr>
<td>Summa</td>
<td>5 220</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Summa investeringar</td>
<td>85 900 (95 900)</td>
</tr>
</tbody>
</table>

Tabell 5 - Investeringskostnader för nödvändiga åtgärder vid 700 000 p e med MBBR och nuvarande krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omställning till MBBR i tre linjer</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>75 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>3 400</td>
</tr>
<tr>
<td>Ventilation</td>
<td>-</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>3 600</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>20 500</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>19 000</td>
</tr>
<tr>
<td>Summa</td>
<td>121 500</td>
</tr>
</tbody>
</table>
Extra luftningskapacitet BB07-11

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Kostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process och maskin</td>
<td>7 500</td>
</tr>
<tr>
<td>Bygg</td>
<td>500</td>
</tr>
<tr>
<td>Ventilation</td>
<td>10 000</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>1 500</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>4 900</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>4 500</td>
</tr>
<tr>
<td>Summa</td>
<td>18 900 (28 900)</td>
</tr>
</tbody>
</table>

Bucherpress #5

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Kostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maskin</td>
<td>4 200</td>
</tr>
<tr>
<td>El och automation</td>
<td>250</td>
</tr>
<tr>
<td>Montage</td>
<td>250</td>
</tr>
<tr>
<td>Projektering</td>
<td>50</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>470</td>
</tr>
<tr>
<td>Summa</td>
<td>5 220</td>
</tr>
</tbody>
</table>

Summa investeringar 145 600 (155 600)

4) Antaget att befintlig installation inte kan hantera de erforderliga luftflödena.

Tabell 6 – Drift- och underhållskostnader för en aktivslamprocess med vakuumteknik vid 700 000 p e och nuvarande krav.

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elförbrukning</td>
<td>10 790</td>
</tr>
<tr>
<td>Underhåll maskin</td>
<td>1450</td>
</tr>
<tr>
<td>Brädsvattenrenning</td>
<td>270³)</td>
</tr>
<tr>
<td>Totalt</td>
<td>12 500</td>
</tr>
</tbody>
</table>

Tabell 7 – Drift- och underhållskostnader för en MBBR process vid 700 000 p e och nuvarande krav.

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elförbrukning</td>
<td>11 330</td>
</tr>
<tr>
<td>Underhåll maskin</td>
<td>1 600</td>
</tr>
<tr>
<td>Kolkälla (etanol)</td>
<td>6 200</td>
</tr>
<tr>
<td>Fällningsskemikalier</td>
<td>1 600</td>
</tr>
<tr>
<td>Brädsvattenrenning</td>
<td>270³)</td>
</tr>
<tr>
<td>Totalt</td>
<td>21 000</td>
</tr>
</tbody>
</table>

³) Årskostnad baserat på att 10^6 m³/år bräddas.
5.1.3 Milstolpe 3 – Belastning motsvarande 900 000 p e

När belastningen uppgår till 900 000 ställs stora krav på processen. Inkommande flöde beräknas ligga vid 3,4 m3/s som medel och dygnsmiddelflöden på 7,8 m3/s kan uppstå. En väl fungerande bräddvattenrenning är därmed nödvändig. Höga krav ställs också på biosteget och slammets egenskaper.

Processberäkningar visar att biostegets kapacitet är tillräcklig för att kunna hantera denna belastning med en fördenitrifikation och utan kolkälla. Dock krävs slamhalter på 4,0 och 4,5 g MLSS/L i respektive gamla delens linjer. Detta förutsätter således att vakuumtekniken fungerar som utlovat för att inte överbelasta eftersedimenteringarna. De redan utförda omställningarna i de anaeroba zonerna lämnas orörda (stycck 5.1.1) och simultanförsämring används fortfarande för fosforavskiljning. Utformningen som redovisas i figur 8 gäller således fortfarande. Ett nytt luftningsystem kommer dock att krävas till gamla delens linjer.

Om vakuumtekniken inte har fungerat så är gamla delens linjer redan omställda till en MBBR process. Vissa omställningar krävs dock för att kunna hantera en ökad belastning. Detta innebär i princip ökad fyllnadsgrad av bärarmaterialet och förstärkning av luftningssystemet med en kapacitet på 17 000 m3/h till gamla delen och 10 000 m3/h till nya delen. Processutformningen är därför samma som i figur 9.

Den tredje rötkammarens hela volym krävs nu för att röta primär- och bioslam. Om externt material rötas krävs ytterligare rötkammarvolymer. De ökade slammängderna medför att mer kapacitet krävs i slamavvattningen. En sjätte Bucherpress och tillhörande slamsilo måste därmed anläggas. I förstudien till den nya slamutlastningen [16] finns två alternativa placeringar av slamavvattningen. I denna rapport antas ”Alternativ 1” gälla, d v s att byggnaden placeras på innergården. Nedan sammanfattas de föreslagna åtgärderna som bör genomföras när 900 000 p e är uppnått, följt av en kostnadsbild. För mer detaljerade uppgifter se [16], [18].

- Maximala slamhalter vid 4,0 och 4,5 g MLSS/L i nya respektive gamla delen med vakuumteknik, nytt luftarsystem installeras.
- Om vakuumteknik ej fungerar som utlovat har processen redan ställts om till MBBR i fyra linjer. Mer bärarmaterial krävs då i dessa linjer samt ökad luftningskapacitet i samtliga linjer.
- Slamavvattningen byggs ut med ytterligare en Bucherpress och tillhörande silos.

I tabell 8 redovisas bedömda investeringskostnader för omställningarna för fallet då vakuumteknik används. I tabell 9 visas fallet med MBBR.
Tabell 8 – Investeringskostnader för nödvändiga åtgärder vid 900 000 p e med en aktivslamprocess och vakuumteknik med nuvarande krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ökad luftningskapacitet BB01-06</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>40 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>500</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>2 800</td>
</tr>
<tr>
<td>Oförutseddä kostnader</td>
<td>10 800</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>9 900</td>
</tr>
<tr>
<td>Summa</td>
<td>64 000</td>
</tr>
<tr>
<td>Bucherpress #6 och slamsilo</td>
<td></td>
</tr>
<tr>
<td>Bygg</td>
<td>4 836</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>2 092</td>
</tr>
<tr>
<td>Maskin</td>
<td>10 461</td>
</tr>
<tr>
<td>Styr och regler</td>
<td>1 569</td>
</tr>
<tr>
<td>Oförutseddä kostnader</td>
<td>2 589</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>4 457</td>
</tr>
<tr>
<td>Summa</td>
<td>26 000</td>
</tr>
</tbody>
</table>

Summa investeringar | 90 000

Tabell 9 – Investeringskostnader för nödvändiga åtgärder vid 900 000 p e med MBBR och nuvarande krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucherpress #6 och slamsilos</td>
<td></td>
</tr>
<tr>
<td>Bygg</td>
<td>4 836</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>2 092</td>
</tr>
<tr>
<td>Maskin</td>
<td>10 461</td>
</tr>
<tr>
<td>Styr och regler</td>
<td>1 569</td>
</tr>
<tr>
<td>Oförutseddä kostnader</td>
<td>2 589</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>4 457</td>
</tr>
<tr>
<td>Summa</td>
<td>26 000</td>
</tr>
</tbody>
</table>

Bärarmaterial och luftningskapacitet

Process och maskin	18 000
Bygg	300
Elutrustning	1 900
Oförutseddä kostnader	5 000
Projektering och genomförande	4 600
Summa	29 800
Ökad luftningskapacitet BB07-11

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process och maskin</td>
<td>24 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>500</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>2 500</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>6 700</td>
</tr>
<tr>
<td>Projektering och genomföring</td>
<td>6 200</td>
</tr>
<tr>
<td>Summa</td>
<td>39 900</td>
</tr>
</tbody>
</table>

Summa investeringar 95 700

Drift och underhållskostnader redovisas för de två olika förslagen i tabell 10 och 11. Endast etanol redovisas som kolkälla i fallet med MBBR. Etanol är att föredra framför metanol och VP1 p g a lägre driftkostnader men också för att etanol kan doseras vid behov. Mikroorganismerna behöver tid för att vänja sig vid metanol och doseringen måste därför vara mer kontinuerlig. Siffrorna som redovisas är särkostnader.

Tabell 10 – Drift- och underhållskostnader för en aktivslamprocess med vakuumteknik vid 900 000 p e och nuvarande krav.

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elförbrukning</td>
<td>24 400</td>
</tr>
<tr>
<td>Underhåll maskin</td>
<td>2 250</td>
</tr>
<tr>
<td>Bräddvattenrenning</td>
<td>540(^b)</td>
</tr>
<tr>
<td>Totalt</td>
<td>26 700</td>
</tr>
</tbody>
</table>

Tabell 11 – Drift- och underhållskostnader för en MBBR process vid 900 000 p e och nuvarande krav.

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elförbrukning</td>
<td>23 900</td>
</tr>
<tr>
<td>Underhåll maskin</td>
<td>900</td>
</tr>
<tr>
<td>Kolkälla (etanol)</td>
<td>7 800</td>
</tr>
<tr>
<td>Fällningskemikalier</td>
<td>2 100</td>
</tr>
<tr>
<td>Bräddvattenrenning</td>
<td>540(^b)</td>
</tr>
<tr>
<td>Totalt</td>
<td>35 200</td>
</tr>
</tbody>
</table>

\(^b\) Årskostnad baserat på att 2×10\(^6\) m\(^3\)/år bräddas.

5.2 Fall 2 – Skärpta reningskrav

5.2.1 Milstolpe 1 – Nuvarande belastning upp till 700 000 p e

Grundprincipen för de omställningar som redovisas i stycke 5.1 kommer att gälla även om nya reningskrav kommer. Det vill säga, om vakuumtekniken fungerar så är den att föredra, annars ställs vissa linjer om till en MBBR process. När det gäller fosforrenningen krävs sannolikt andra lösningar än en renodlad simultanfällning. I dagsläget är fosfathalten i utgående vatten från eftersedimenteringarna ofta lägre än 0,4 mg/L. Via sandfiltren avskiljs sedan fosfat och suspenderad substans tillräckligt effektivt för att som årsmedelvärde ligga under 0,2 mg total-P/L. Om belastningen ökar och nya krav ställs är det dock osannolikt att
denna lösning är tillräcklig. Genom att öka doseringen till simultanfällningen kan visserligen lägre utgående fosforhalter uppnås, men eftersom mängden kemslam då ökar kan det resultera i otillräckliga slamåldrar för att samtidigt kunna hantera ett kvävereningskrav på 5 mg total-N/L. Dessutom innebär en ökad slammängd i biosteget att eftersedimenteringarna belastas hårdare, något som om möjligt bör undvikas för att motverka slamflykt till sandfiltren.

Samtidigt kan en väl fungerande vakuumteknik innebära att denna effekt motverkas eftersom slamhalterna (och därmed även slamåldern) kan ökas kraftigt utan att riskera slamflykt. I och med detta skulle simultanfällningen kunna drivas betydligt längre än idag. En relativt enkelt åtgärd som också bör utföras för att förbättra eftersedimenteringarnas kapacitet, oavsett MBBR eller vakuumteknik, är installation av dämpskärmar eller bafflar. Detta kan motverka densitetsströmmar vid höga flöden och att slamflykt uppstår.

Processberäkningar visar att dagens volymer räcker till för att kunna hantera skärpta reningskrav med en aktivslamprocess. Dock krävs ännu högre slamminger jämfört med fallen med nuvarande crav och vakuumtekniken måste därmed implementeras relativt snart. Ett första steg är att testa tekniken i ett bioblock i full skala. Om tekniken inte fungerar som utsökt påbörjas istället direkt en förstudie för en MBBR process. Oavsett om vakuumtekniken eller en MBBR process blir aktuell så måste extern kolkälla nyttjas för att nå ned till 5 mg total-N/L och pilotförsök utförs därför också med efterdeinltrifikation.

Eftersom biologisk fosforrening inte är ett rimligt alternativ kommer de anaeroba zonerna ställas om till anoxiska zoner i samtliga bassänger. I figur 10 visas en schematisk bild över denna omställning med nuvarande aktivslamprocess.
Figur 10 – Omställning av biosteget innan 700 000 p e vid skärpta krav.

I och med fosforkravets ökning krävs också att inget vatten tillåts att brädda orenat. En effektiv bräddvattenrening måste därför ha implementerats innan skärpta krav träder i kraft. Sandfångens inlopp ska i samband med byggandet av bräddvattenrenningen öppnas upp för att säkerställa flöden på 6 m3/s genom huvudlinjen.

Nya reningskrav kommer inte att inverka nämnvärt på rötningen. Här krävs oavsett reningskrav en utökad kapacitet innan 700 000 p e nås om en hög gasproduktion ska kunna upprätthållas i alla lägen. En utökad rötkammarvolym på 9000 m3 bör därför ha tagits i drift innan 700 000 p e. Det antas att Kemicond är godkänd som hygieniseringsmetod och att mesofil rötning utförs i samtliga rötkammare.

Den nya byggnaden för slamavvattningen (stycke 4.3.2) har tagits i drift långt innan 700 000 p e är uppnått. Med endast fyra Bucherpressar kommer kapaciteten vara något i underkant men det antas att dessa räcker upp till 700 000 p e. Främst tack vare det faktum att varje press får en kapacitetsökning på 10-20 % i och med den nya utlastningen (silos). Investeringskostnaden för den nya slamutlastningen inkluderas inte i denna rapport.

Nedan sammanfattas kortfattat vilka försök och åtgärder som måste genomföras innan belastningen har uppnått 700 000 p e. Det har antagits att införande av skärpta reningskrav inte kommer att ske innan 700 000 p e och att det finns ett utrymme för utvärdering av nya processer. Om skärpta reningskrav införts tidigare kommer de åtgärder som presenteras för milstolpe 2 (stycke 5.2.2) istället att behöva utföras.
Omställning av anaeroba zoner till anoxiska. Om vacuumteknik fungerar som utlovat kommer också luftrarssystemet i första oxiiska zonen i gamla delens linjer modifieras.

Försöks påbörjas med föräftning i kombination med simultanfällning, ny doseringsanläggning krävs för dosering av JKL.

Försöksanläggning för avgasningstorn installeras i BB11.

Försöksanläggning för kolkälla installeras i BB11.

Om vacuumteknik ej fungerar som önskat påbörjas fullskaleförsök med MBBR.

Dämpskärm installeras i ES01 och ES11 som försök. Om det faller väl ut modifieras samtliga eftersedimenteringar.

Bräddvattenrenning för 3 m³/s installeras i gammalt sandfång, inlopp till befintliga sandfång öppnas upp.

Ny rötkammare om 9000 m³ anläggs, 4300 m³ berg tas ut, ny anslutningstunnel från redan befintlig kommunikationstunnel anläggs.

I tabell 12 redovisas bedömda investeringskostnader för omställningarna. Ökade drift och underhållskostnader redovisas inte för denna milstolpe eftersom den inte berör en given belastning utan istället situationen från nuvarande belastning upp till 700 000 p e.

Tabell 12 – Investeringskostnader för nödvändiga åtgärder innan 700 000 p e med skärpta krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omobställning av zoner i biosteg samt dämpskärm i eftersedimenteringar</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>4 500</td>
</tr>
<tr>
<td>Bygg</td>
<td>2 400</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>500</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>1 900</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>1 700</td>
</tr>
<tr>
<td>Summa</td>
<td>11 000</td>
</tr>
<tr>
<td>Bräddvattenrenning (Actiflo)</td>
<td></td>
</tr>
<tr>
<td>Rivning samt sprängning och förstärkning</td>
<td>6 400</td>
</tr>
<tr>
<td>Betongkonstruktioner</td>
<td>4 500</td>
</tr>
<tr>
<td>Maskinutrustning</td>
<td>8 900</td>
</tr>
<tr>
<td>Instrument och styr</td>
<td>800</td>
</tr>
<tr>
<td>Montage för maskin och el</td>
<td>2 400</td>
</tr>
<tr>
<td>Allmän el</td>
<td>650</td>
</tr>
<tr>
<td>Ventilation</td>
<td>300</td>
</tr>
<tr>
<td>VVS installation</td>
<td>150</td>
</tr>
<tr>
<td>Flödesmätare, ombyggnad för koagulant</td>
<td>250</td>
</tr>
<tr>
<td>Design, projektering, upphandling</td>
<td>5 000</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>2 440</td>
</tr>
<tr>
<td>Summa</td>
<td>31 800</td>
</tr>
</tbody>
</table>

Ökad rötkammarvolym
<table>
<thead>
<tr>
<th>Maskinutrustning</th>
<th>12 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>El och automation</td>
<td>2 925</td>
</tr>
<tr>
<td>Bygg</td>
<td>16 300</td>
</tr>
<tr>
<td>Projektering och byggledning</td>
<td>4 702</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>3 135</td>
</tr>
<tr>
<td>Summa</td>
<td>39 200</td>
</tr>
</tbody>
</table>

Försöksanläggning för avgasningstorn

<table>
<thead>
<tr>
<th>Avgasningsanläggning</th>
<th>1 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montage</td>
<td>375</td>
</tr>
<tr>
<td>Sprängning för hål</td>
<td>110</td>
</tr>
<tr>
<td>El och automation</td>
<td>20</td>
</tr>
<tr>
<td>Intransport berg, utvändigt upplag</td>
<td>60</td>
</tr>
<tr>
<td>Projektering, byggledning etc.</td>
<td>41</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>207</td>
</tr>
<tr>
<td>Summa</td>
<td>2 300</td>
</tr>
</tbody>
</table>

Försöksanläggning kolkälla

<table>
<thead>
<tr>
<th>Process och maskin</th>
<th>1 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bygg</td>
<td>1 300</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>500</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>700</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>600</td>
</tr>
<tr>
<td>Summa</td>
<td>4 100</td>
</tr>
</tbody>
</table>

Försök med för- & simultanfällning

<table>
<thead>
<tr>
<th>Maskin och el</th>
<th>1 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bygg</td>
<td>400</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>400</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>300</td>
</tr>
<tr>
<td>Summa</td>
<td>2 300</td>
</tr>
</tbody>
</table>

Försökslinje med MBBR

<table>
<thead>
<tr>
<th>Process och maskin</th>
<th>28 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bygg</td>
<td>1 700</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>1 200</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>7 800</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>7 200</td>
</tr>
<tr>
<td>Summa</td>
<td>46 400</td>
</tr>
</tbody>
</table>

Nya inlopp till sandfång

Uppskattat till **500**

Summa investeringar

| | 91 200 (137 600)**7)** |

7) Endast om vakuumteknik inte fungerar som väntat.
5.2.2 Milstolpe 2 – Belastning motsvarande 700 000 p e

Med skärpta reningskrav och en belastning motsvarande 700 000 p e ställs stora krav på en väl fungerande bräddvattenrenning. Även huvudlinjens fosforavskiljning måste vara effektiv och kombinationen av förfällning, simultanfällning och efterpolering används i samtliga linjer förutsatt att vakuumtekniken har fallit väl ut. Då installeras också avgasningstorn i samtliga biobassänger. Extern kolkälla och efterdenitrifikation blir ändå nödvändig för att klara av kvävekraven. Med maximala slamhalter på 3,5 och 4,0 mg/L i nya respektive gamla delens linjer säkerställs halter under 5 mg total-N/L. Stora omställningar av zonindelningen samt luftningsystemet krävs i samtliga biobassänger. Den redan genomförda omställningen av anaeroba zoner till anoxiska zoner (stycke 5.1.1.) ska bibehållas. I Figur 11 visas processlayouten.

Figur 11 – Zonindelning med ASP vid 700 000 p e och skärpta krav.

Om vakuumtekniken inte fungerar som utlovat kommer istället en MBBR process att implementeras till fyra av den gamla delens linjer. Med en optimal fyllnadsgrad av bärarmaterial på 42-50 % krävs att endast tre biobassänger ställs om till en MBBR process. Dock kommer fyra linjer krävas när belastningen har nått upp till 900 000 p e och det är därför mer kostnadseffektivt att direkt anlägga fyra linjer och istället hålla en lägre fyllnadsgrad till en början. Med en MBBR process krävs också kolkälla och ett grovblåsigt...
luftarsystem samt att järnklorid doseras innan eftersedimentering för att motverka höga halter av findispersa flockar och fosfor. Till dessa linjer används då inte förfällning och simultanfällning, endast efterfällning och polering på sandfiltren. Det krävs inga större omställningar av eftersedimenteringarna för denna lösning. Eftersom endast 4 linjer används i gamla delen kan en framtidiga läkemedelsrening rymmas i en av de avställda linjerna. Nya delens linjer drivs här som en aktivslamprocess med efterdenitrifikation och extern kolkälla. Maximala slamhalter kring 3,0 mg/L kommer att krävas i aktivslamprocessen. Den tidigare omställningen av de anaeroba zonerna till anoxiska zoner (stykke 5.1.1.) ska bibehållas. I figur 12 visas processutformningen.

Figur 12 – Processutformning med MBBR och ASP vid 700 000 p e och skärpta krav.

Den tredje rötkammaren är redan tagen i drift och den ökade slammängden medför att om externt material ska emotas så måste ytterligare rötkammarvolymer tillkomma. Slamavvattningens fyra Bucherpressar kommer här inte räcka till kapacitetsmässigt och en femte maskin installeras.

Nedan sammanfattas de föreslagna åtgärderna som bör genomföras när 700 000 p e är uppnått, följd av en kostnadsbild. För detaljerade uppgifter om åtgärderna se [1], [2], [3],[12], [13], [18].

- Maximala slamhalter på 3,5 och 4,0 g MLSS/L i nya respektive gamla delen.
- Vakuumtorn installeras i samtliga biobassänger.
Omställning av zoner och komplettering av nytt luftningssystem i samtliga linjer.
Installation av ny utrustning för dosering av kolkälla till samtliga linjer.
Förfällning i kombination med simultanfällning och efterpolering på sandfilter används i samtliga linjer.
Om vakuumteknik ej fungerar som önskat ställs totalt fyra linjer istället om till MBBR, en linje är då redan omställd. Nytt luftarsystem krävs då i gamla delens linjer samt installation av doseringsanläggning för järnklorid och kolkälla. Omläggning av zoner och förstärkning av luftningssystemet för efterdenitrifikation krävs i nya delens linjer.
En femte Bucherpress installeras i den nya slamavvattningen.

I tabell 13 redovisas bedömda investeringskostnader för omställningarna för fallet då vakuumteknik används. Tabell 14 visar fallet med MBBR.

Tabell 13 – Investeringskostnader för ASP och vakuumteknik vid 700 000 p e med skärpta krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avgasningstorn i biobassänger</td>
<td></td>
</tr>
<tr>
<td>Avgasningsanläggning</td>
<td>24 000 kkr</td>
</tr>
<tr>
<td>Montage</td>
<td>6 000 kkr</td>
</tr>
<tr>
<td>Sprängning för hål</td>
<td>1 760 kkr</td>
</tr>
<tr>
<td>El och automation</td>
<td>400 kkr</td>
</tr>
<tr>
<td>Intransport berg, utvändigt upplag</td>
<td>965 kkr</td>
</tr>
<tr>
<td>Entreprenadsamordning</td>
<td>1 988 kkr</td>
</tr>
<tr>
<td>Projektering, byggledning etc.</td>
<td>8 077 kkr</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>3 313 kkr</td>
</tr>
<tr>
<td>Summa</td>
<td>46 500 kkr</td>
</tr>
</tbody>
</table>

Omställning till efterdenitrifikation

Process och maskin	55 000 kkr
Bygg	8 000 kkr
Ventilation	10 000 (8) kkr
Elutrustning	7 500 kkr
Oförutsedda kostnader	20 100 kkr
Projektering och genomförande	18 500 kkr
Summa	**109 100 (119 100) (8)**

Bucherpress #5

Maskin	4 200 kkr
El och automation	250 kkr
Montage	250 kkr
Projektering	50 kkr
Oförutsett 10 %	470 kkr
Summa	**5 220 kkr**

Summa investeringar

| | **167 800 (170 800) (8)** |
Tabell 14 – Investeringskostnader för MBBR vid 700 000 p e med skärpta krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omgångning till MBBR i tre linjer</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>75 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>3 000</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>4 500</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>20 600</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>19 000</td>
</tr>
<tr>
<td>Summa</td>
<td>122 100</td>
</tr>
<tr>
<td>Omgångning till efterdentrifikation BB07-11</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>28 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>7 000</td>
</tr>
<tr>
<td>Ventilation</td>
<td>10 000<sup>8)</sup></td>
</tr>
<tr>
<td>Elutrustning</td>
<td>3 500</td>
</tr>
<tr>
<td>Oförutsedda kostnader 25 %</td>
<td>12 100</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>11 200</td>
</tr>
<tr>
<td>Summa</td>
<td>61 800 (71 800)<sup>8)</sup></td>
</tr>
</tbody>
</table>

Bucherpress #5

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maskin</td>
<td>4 200</td>
</tr>
<tr>
<td>El och automation</td>
<td>250</td>
</tr>
<tr>
<td>Montage</td>
<td>250</td>
</tr>
<tr>
<td>Projektering</td>
<td>50</td>
</tr>
<tr>
<td>Oförutsett 10 %</td>
<td>470</td>
</tr>
<tr>
<td>Summa</td>
<td>5 220</td>
</tr>
</tbody>
</table>

Summa investeringar

| Summa investeringar | 189 000 (199 000)⁸⁾ |

⁸⁾Antaget att befintlig ventilation ej är tillräcklig, dock ej utrett.

Drift och underhållskostnader redovisas för de två olika förslagen i tabell 15 och 16. Endast etanol redovisas som kolkälla. Etanol har valts framför metanol och VP1 dels p g a lägre driftkostnader med också för att denna kolkälla kan doseras vid behov. Siffrorna som redovisas är särkostnader. Kostnaderna för bräddvattenrenning baseras på att 10⁶ m³/år bräddas.

Tabell 15 – Drift- och underhållskostnader för en aktivslamprocess med vakuumteknik vid 700 000 p e och skärpta krav.

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elförbrukning</td>
<td>11 400</td>
</tr>
<tr>
<td>Underhåll maskin</td>
<td>2 650</td>
</tr>
<tr>
<td>Kolkälla (etanol)</td>
<td>5 400</td>
</tr>
<tr>
<td>Post</td>
<td>Kostnad (kkr/år)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Elförbrukning</td>
<td>13 100</td>
</tr>
<tr>
<td>Underhåll maskin</td>
<td>2 100</td>
</tr>
<tr>
<td>Kolkälla (etanol)</td>
<td>11 500</td>
</tr>
<tr>
<td>Fällningskemikalier</td>
<td>7 000</td>
</tr>
<tr>
<td>Bräddvattenrening</td>
<td>270</td>
</tr>
<tr>
<td>Total</td>
<td>34 000</td>
</tr>
</tbody>
</table>

Tabell 16 – Drift- och underhållskostnader för en MBBR process vid 700 000 p e med skärpta krav.

5.2.3 Milstolpe 3 - Belastning motsvarande 900 000 p e

När belastningen uppgår till 900 000 p e ställs stora krav på processen. Inkommande flöde beräknas ligga vid 3,4 m3/s som medel och dygnsmedelflöden på 7,8 m3/s kan uppstå. En väl fungerande bräddvattenrening är därmed nödvändig. Höga krav ställs också på biosteget och slammets egenskaper. Processberäkningar visar att aktivslamprocessen har tillräcklig kapacitet för att kunna hantera denna belastning med för- och efterdenitrifikation samt extern kolkälla. Dock krävs slamhalter på 4,5 och 5,0 g MLSS/L i nya respektive gamla delens linjer. Detta förutsätter att vakuumtekniken fungerar som utlovat för att inte överbelasta eftersedimenteringarna. De redan utförda omställningar av zonindelningen som utförts vid 700 000 p e lämnas orörda men en till blåsmaskin måste installeras för redundans. I figur 13 visas processutformningen.
Figur 13 – Zonindelning med ASP vid 900 000 p.e och skärpta reningskrav.

För fosforreningen används fortfarande förfällning i kombination med simultanfällning och efterpolering på sandfiltren. Det är här viktigt att dämpskärmar har installerats i eftersedimenteringarna och att sandfiltren klarar sin nominella kapacitet på 6 m³/s.

Om vakuumtekniken inte har fungerat som utlovat är redan gamla delens linjer omställda till en MBBR process. I princip krävs då enbart mer bärarmaterial, kolkälla och ytterligare en blåsmaskin för redundans. I aktivslamprocessen i nya delens linjer krävs då en maximal slamhalt på 3,5 g MLSS/L vilket kan anses vara högt under årets kalla period. Det är därför av stor vikt att vara minimera simultanfällningen för att på så sätt hålla slamproduktionen nere. Även här bör en till blåsmaskin installeras för redundans. I de linjer där MBBR används sker fosforavskiljningen med efterfällning och polering på sandfiltren. I figur 14 visas processutformningen för fallet med MBBR.
Figur 14 – Zonindelning med ASP vid 900 000 p e och skärpta reningskrav.

Den ökade belastningen på slamavvattningen medför att ytterligare kapacitet krävs och en sjätte Bucherpress och tillhörande slamsilo måste anläggas i befintlig avvattningsbyggnad.

Nedan sammanfattas de föreslagna åtgärderna som bör genomföras när 900 000 p e är uppnått, följt av en kostnadsbild.

- Maximala slamhalter på 4,5 och 5,0 g MLSS/L i nya respektive gamla delen med vakuumtekniken.
- Komplettering blåsmaskin à 10 000 Nm³/h krävs till nya delens linjer.
- Om vakuumteknik ej fungerar som utlovat används redan MBBR i fyra av gamla delens linjer. Här krävs dock större mängd bärarmaterial och en till blåsmaskin å 17 000 Nm³/h för redundans. Också nya delens linjer kräver ytterligare luftningskapacitet med en till blåsmaskin å 10 000 Nm³/h.
- En sjätte Bucherpress och tillhörande slamsilos anläggs i slamavvattningen.

I tabell 17 redovisas bedömda investeringskostnader för omställningarna för fallet då vakuumteknik används. Tabell 18 visar fallet med MBBR.
Tabell 17 – Investeringskostnader för ASP och vakuumteknik vid 900 000 p e skärpta krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ökad luftningskapacitet</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>5 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>500</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>1 500</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>1 800</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>1 600</td>
</tr>
<tr>
<td>Summa</td>
<td>10 400</td>
</tr>
<tr>
<td>Bucherpress #6 och slamsilo</td>
<td></td>
</tr>
<tr>
<td>Bygg</td>
<td>4 836</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>2 092</td>
</tr>
<tr>
<td>Maskin</td>
<td>10 461</td>
</tr>
<tr>
<td>Styr och regler</td>
<td>1 569</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>2 589</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>4 457</td>
</tr>
<tr>
<td>Summa</td>
<td>26 000</td>
</tr>
<tr>
<td>Summa investeringar</td>
<td>36 400</td>
</tr>
</tbody>
</table>

Tabell 18 – Investeringskostnader för MBBR vid 900 000 p e och skärpta krav.

<table>
<thead>
<tr>
<th>Processdel</th>
<th>Investeringskostnad (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ökad luftningskapacitet och bärarmaterial</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>18 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>300</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>2 000</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>5 100</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>4 600</td>
</tr>
<tr>
<td>Summa</td>
<td>30 000</td>
</tr>
<tr>
<td>Ökad luftningskapacitet BB07-11</td>
<td></td>
</tr>
<tr>
<td>Process och maskin</td>
<td>5 000</td>
</tr>
<tr>
<td>Bygg</td>
<td>500</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>1 500</td>
</tr>
<tr>
<td>Oförutsedda kostnader</td>
<td>1 800</td>
</tr>
<tr>
<td>Projektering och genomförande</td>
<td>1 600</td>
</tr>
<tr>
<td>Summa</td>
<td>10 400</td>
</tr>
<tr>
<td>Bucherpress #6 och slamsilo</td>
<td></td>
</tr>
<tr>
<td>Bygg</td>
<td>4 836</td>
</tr>
<tr>
<td>Elutrustning</td>
<td>2 092</td>
</tr>
</tbody>
</table>
Tabell 19 – Drift- och underhållskostnader för aktivslamprocess med vakuumteknik vid 900 000 p.e och skärpta reningskrav.

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elförbrukning</td>
<td>24 700</td>
</tr>
<tr>
<td>Underhåll maskin</td>
<td>2 750</td>
</tr>
<tr>
<td>Kolkälla (etanol)</td>
<td>7 000</td>
</tr>
<tr>
<td>Fällningskemikalier</td>
<td>11 000</td>
</tr>
<tr>
<td>Bräddvattenrening</td>
<td>540</td>
</tr>
<tr>
<td>Totalt</td>
<td>46 000</td>
</tr>
</tbody>
</table>

Tabell 20 – Drift- och underhållskostnader för MBBR process vid 900 000 p.e och skärpta reningskrav.

<table>
<thead>
<tr>
<th>Post</th>
<th>Kostnad (kkr/år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elförbrukning</td>
<td>24 500</td>
</tr>
<tr>
<td>Underhåll maskin</td>
<td>2 600</td>
</tr>
<tr>
<td>Kolkälla (etanol)</td>
<td>14 800</td>
</tr>
<tr>
<td>Fällningskemikalier</td>
<td>9 100</td>
</tr>
<tr>
<td>Bräddvattenrening</td>
<td>540</td>
</tr>
<tr>
<td>Totalt</td>
<td>51 500</td>
</tr>
</tbody>
</table>

5.3 Ekonomisk analys

En översiktlig bild av nödvändiga åtgärder för fallen med skärpta eller nuvarande krav redovisas i Bilaga VII och VIII. Här har investeringskostnaderna delats upp i generella åtgärder som måste utföras oavsett val av teknik, samt för fallet med vakuumtekniken eller MBBR. Vita rutor illustrerar generella åtgärder, gröna vakuumtekniken och gula MBBR. Kostnaderna är också uppdelade i en tidsskala om tre fall; vad som måste utföras vid milstolpe 1, 2 och 3. Tillkommande drift- och underhållskostnader direkt kopplade till de två teknikerna har delats upp enligt samma tidsskala. Inga siffror kan redovisas för milstolpe 1 eftersom detta inte avser en given belastning.
5.3.1 Nuvarande krav

I figur 15 redovisas totala tillkommande kostnaderna för reningsverket, d v s drift och kapitalkostnader allteftersom belastningen ökar för fallet med nuvarande krav. Här är inte reningsverkets redan existerande årliga kostnad inkluderad, endast tillkommande kostnader. I figuren illustreras åtgärderna med pilar, blåa för vakuumteknik, gröna för MBBR och svarta för generella åtgärder som måste utföras oavsett teknik. Det framgår här att MBBR blir en mer kostsam lösning vilket till stor del beror på högre driftkostnader än med vakuumtekniken, se tabell 6, 7, 10 och 11 för jämförelse mellan metoderna. Två stora kliv i årskostnaderna uppstår när vakuumteknik eller MBBR införs vid 700 000 p e samt vid kapacitetsökningen vid 900 000 p e. Innan 700 000 p e uppnås tillräcklig kapacitet med hjälp av införande av bräddvattenrening vid 560 000 p e och förlängda anoxiska zoner.

Figur 15 – Tillkommande årliga drift- och kapitalkostnader med nuvarande krav för de två olika teknikerna.
kan det vara gynnsamt för abonnenterna att nya kommuner ansluts i samband med de stora omställningarna så att kostnaderna per abonnent blir oförändrade eller till och med sänks.

Figur 16 – Totala årliga kostnader per antal anslutna för de två olika teknikerna med nuvarande krav.

Liknande trend kan ses när totala årskostnaden relateras till mängden avskiljd OCP vilket visas i figur 17. Här representeras den avskiljda mängden kväve, fosfor och COD med samlingstermen OCP (Oxygen Consumption Potential) för att kunna mäta den totala ”reningsgraden”. Med nuvarande krav är det en relativt stor skillnad i reningskostnaden mellan de två metoderna, mycket beroende på att MBBR kräver externt kol till skillnad från vakuumtekniken.
I figur 18 redovisas totala tillkommande kostnaderna för reningsverket, d.v.s drift- och kapitalkostnader allteftersom belastningen ökar för fallet med skärpta krav. Vid jämförelse med motsvarande kurva med nuvarande krav, Figur 15, syns att skillnaden mellan de två teknikerna nu är mindre. Detta beror främst på att båda teknikerna nu kräver extern kolkälla. I Bilaga VII och VIII framgår också hur de totala investeringskostnaderna sett över tid är relativt lika för fallet med skärpta eller nuvarande krav, men hur driftkostnaderna påverkas kraftigt av skärpta krav.
Tillkommande årskostnad (drift- & kapitalkostnad)

Vakuum eller MBBR - skärpta krav

0 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 100 000

540 000 560 000 580 000 600 000 620 000 640 000 660 000 680 000 700 000 720 000 740 000 760 000 780 000 800 000 820 000 840 000 860 000 880 000 900 000

Antal anslutna (p e)

Figur 18 – Tillkommande årliga kostnader för de två olika teknikerna med skärpta krav.

I Figur 19 visas total års- kostnad per antal anslutna och som med nuvarande krav syns en nedgående trend. Eftersom det är antaget att skärpta krav inte införs förrän vid 700 000 p e påminner kurvorna för skärpta krav mycket om kurvorna för nuvarande krav fram till 700 000 p e. Dock tillkommer eller tidigareläggs vissa försök.

I figur 20 visas de totala årliga kostnaderna per kg avskiljd OCP. I figuren visas också två kurvor där den tillkommande kostnaden som skärpta krav medför har ställts i relation till den tillkommande mängden OCP som avskiljs. Kurvorna visar således merkostnaden för skärpta krav för de två teknikerna. Det framgår hur dessa tillkommande kilon i vissa perioder får en kostnad som är dubbelt så hög som kostnaden för den totala mängden OCP som avskiljs.

Det framgår också hur denna tillkommande kostnad blir mycket högre med vakuumteknik vilket beror på att extern kolkälla då krävs, vid nuvarande krav kan vakuumtekniken hantera en belastning upp till 900 000 p e utan externt kol.
Figur 19 – Totala årliga kostnader för de två olika teknikerna med skärpta krav.

Figur 20 – Totala årliga kostnader per kg avskiljd OCP för de två olika teknikerna samt merkostnad för tillkommande mängd OCP med skärpta krav.
Referenser

(2) R. Cederborg m fl. Idéförslag Käppala avloppsreringsverk - Förslag till framtida vattenbehandling. VA- ingenjörerna 2009-11-12

(6) O. Tottie. Implementering av intermittent luftning i Käppala ARV. ATEK avvattningssteknik 2010-07-29.

(17) S. Sjögren. Försök utförda i Käppalas laboratorium 2008. CIBA.

BILAGA II – Fall 1, 3 m³/s
BILAGA III – Fall 2, 1,5 m3/s
BILAGA IV – Placering av ny slamutlastning
BILAGA V – Markprofiler ny slamutlastning
BILAGA VI – Tvräsektioner ny slamutlastning
BILAGA VII – Översiktsbild åtgärder, nuvarande reningskrav

<table>
<thead>
<tr>
<th>Investerings (kkr)</th>
<th>< 700 000 p e</th>
<th>700 000 p e</th>
<th>900 000 p e</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generella</td>
<td>86 100</td>
<td>4 800</td>
<td>26 000</td>
<td>116 900</td>
</tr>
<tr>
<td>Vakuumteknik</td>
<td>2 300</td>
<td>90 700</td>
<td>64 000</td>
<td>157 000</td>
</tr>
<tr>
<td>MBBR</td>
<td>46 400</td>
<td>150 200</td>
<td>69 700</td>
<td>266 300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drift & UH (tillkommande, kkr)</th>
<th>700 000 p e</th>
<th>900 000 p e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med vakuumteknik</td>
<td>12 500</td>
<td>26 700</td>
</tr>
<tr>
<td>Med MBBR</td>
<td>21 000</td>
<td>35 200</td>
</tr>
</tbody>
</table>

- **Bräddvattenrenning (31 800 kkr)**
- **Simultanfällning samtliga linjer**
- **Inlopp till sandfång öppnas upp (500 kkr)**
- **Försökslinje MBBR (46 400 kkr)**
- **Dämpskärmor installeras i eftersedimenteringar (1 500 kkr)**
- **Ökad röktammarvolym (39 200 kkr)**
- **Omobställning av anaeroba zoner för ökad denitrifikation (9 000 kkr)**
- **Försök med extern kolkälla (4 100 kkr)**
- **Vakuumteknik i samtliga linjer (46 500 kkr)**
- **MBBR i fyra linjer (150 400 kkr)**
- **Bucherpress #5 (5 220 kkr)**
- **Bucherpress #6 samt ny slamsilo (26 000 kkr)**
- **Ökad luftningskapacitet (44 200 kkr)**
- **Dämpskärmar installeras i eftersedimenteringar (1 500 kkr)**
- **Ökad luftningskapacitet (64 000 kkr)**
- **Mer bärarmaterial och ökad luftningskapacitet (69 700 kkr)**
BILAGA VIII – Översiktsbild åtgärdar, skärpta reningskrav

<table>
<thead>
<tr>
<th>Investeringar (kkr)</th>
<th>< 700 000 p e</th>
<th>700 000 p e</th>
<th>900 000 p e</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generella</td>
<td>88 900</td>
<td>5 220</td>
<td>26 000</td>
<td>120 100</td>
</tr>
<tr>
<td>Vakuumteknik</td>
<td>2 300</td>
<td>165 600</td>
<td>10 400</td>
<td>178 300</td>
</tr>
<tr>
<td>MBBR</td>
<td>46 400</td>
<td>193 900</td>
<td>40 400</td>
<td>280 700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drift & UH (tillkommande, kkr)</th>
<th>700 000 p e</th>
<th>900 000 p e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med vakuumteknik</td>
<td>28 100</td>
<td>46 000</td>
</tr>
<tr>
<td>Med MBBR</td>
<td>34 000</td>
<td>51 500</td>
</tr>
</tbody>
</table>

- **Förfällning, simultanfällning och efterpolering i samtliga linjer**
- **Bücherpress #5** (5 220 kkr)
- **Bücherpress #6 samt ny slamsilo** (26 000 kkr)
- **Komplettering av luftningssystem** (10 400 kkr)
- **Ökad luftningskapacitet samt mer bärarmaterial** (40 400 kkr)

Vakuumteknik i samtliga linjer (46 500 kkr)

Omställning av zoner för efter-denitrifikation (119 100 kkr)

MBBR i fyra linjer samt efter-denitrifikation (193 900 kkr)

Oxidation av anaeroba zoner för ökad denitrifikation (9 500 kkr)

Inlopp till sandfång öppnas upp (500 kkr)

Dämpskärmar installeras i eftersedimenteringar (1 500 kkr)

Ökad rötkammarvolym (39 200 kkr)

Ökad luftningskapacitet samt mer bärarmaterial (40 400 kkr)

- **Ökad rötkammarvolym** (39 200 kkr)
- **Försökslinje MBBR** (46 400 kkr)
- **Bücherpress #6 samt ny slamsilo** (26 000 kkr)
- **Komplettering av luftningssystem** (10 400 kkr)
- **Ökad luftningskapacitet samt mer bärarmaterial** (40 400 kkr)